image based change detection to reduce false alarms in
play

Image-based change detection to reduce false alarms in the - PowerPoint PPT Presentation

Image-based change detection to reduce false alarms in the Vision1200 synthetic aperture sonar Dr. C. Erdmann and Dr. J. Groen a sound decision a sound decsion The ATLAS ELEKTRONIK Group/ 1 Image-based Change Detection Content


  1. Image-based change detection to reduce false alarms in the Vision1200 synthetic aperture sonar Dr. C. Erdmann and Dr. J. Groen … a sound decision … a sound decsion The ATLAS ELEKTRONIK Group/ 1

  2. Image-based Change Detection Content • Introduction • Data • Data preprocessing • SAS processing • Normalization and filtering • Registration • Coarse registration • Fine registration (coherent, incoherent) • Performance analysis • Detectors • Results • Receiver operating characteristics (ROC) • Robustness analysis • Summary The ATLAS ELEKTRONIK Group/ 2

  3. Image-based Change Detection Basic processing chain Preprocessing Preprocessing Coarse Registration t 1 t 2 Fine Registration Subtraction Detection The ATLAS ELEKTRONIK Group/ 3

  4. Image-based Change Detection Survey • ITMINEX NATO Trial 2014 • Study commissioned by WTD 71 • Provision of RV „Alliance“ and trial organization by CMRE • 3 identical missions • 2 different sets of 7 objects • 34 usable legs with total of 116 MLO images • Sea Otter AUV • ATLAS ELEKTRONIK UK „Vision MK1 1200“ SAS System The ATLAS ELEKTRONIK Group/ 4

  5. Image-based Change Detection Data: typical example The ATLAS ELEKTRONIK Group/ 5

  6. Data processing SAS processing • ATLAS ELEKTRONIK SAS processing chain • Artificial defocusing by sway data distortion The ATLAS ELEKTRONIK Group/ 6

  7. Data Processing Normalization and Filtering • • Normalization Filtering • • Based on along-track mean No filtering • • Based on roll data (eliminate roll effect) Lee-filter: speckle-reducing • • Based on combined along-track and range median Anisotropic diffusion filter: edge-preserving The ATLAS ELEKTRONIK Group/ 7

  8. Image Registration Coarse registration • • Rigid registration Rotation correction • • Δ x, Δ y: 2cm, Δϕ : 0.1 ° Maximize correlation coefficient of whole image The ATLAS ELEKTRONIK Group/ 8

  9. Image Registration Fine Registration The ATLAS ELEKTRONIK Group/ 9

  10. Image Registration Coherent Fine Registration Δ t = 3 h The ATLAS ELEKTRONIK Group/ 10

  11. Image Registration Coherent Fine Registration The ATLAS ELEKTRONIK Group/ 11

  12. Image Registration Coherent vs. Incoherent Fine Registration The ATLAS ELEKTRONIK Group/ 12

  13. Image Preparation Subtraction The ATLAS ELEKTRONIK Group/ 13

  14. Image Preparation Subtraction The ATLAS ELEKTRONIK Group/ 14

  15. Image Preparation Subtraction The ATLAS ELEKTRONIK Group/ 15

  16. Example 2 The ATLAS ELEKTRONIK Group/ 16

  17. Example 2 The ATLAS ELEKTRONIK Group/ 17

  18. Example 2 The ATLAS ELEKTRONIK Group/ 18

  19. Performance Analysis Performance Analysis: Overall Image Contrast µ σ σ Blue: Δ t = 26 h Red: Δ t = 56 h Coherent, 32x32 px The ATLAS ELEKTRONIK Group/ 19

  20. Performance Analysis Performance Analysis: Overall Image Contrast Blue: Δ t = 26 h Red: Δ t = 56 h σ µ σ Incoherent, 64x64 px The ATLAS ELEKTRONIK Group/ 20

  21. Performance Analysis Performance Analysis: Overall Image Contrast Blue: Δ t = 26 h Red: Δ t = 56 h σ µ σ Incoherent, 512x512 px The ATLAS ELEKTRONIK Group/ 21

  22. Detectors ROC curves Two simple detectors (single score for comparability) 1. Variance detector – Threshold in difference image variance 2. Template matching detector – Template: mean of all MLO signatures The ATLAS ELEKTRONIK Group/ 22

  23. Results Tested Combinations Normalization Filter Detector RRn Range-Roll-normalization ADf Anisotropic Diffusion Filter VARd Variance detector SASn Median-based normalization LEEf Lee-Filter TMd Template matching detector Rn Range normalization NOf No Filter - - The ATLAS ELEKTRONIK Group/ 23

  24. ROC Curves No Change Detection Template Matching Variance Detector Detector The ATLAS ELEKTRONIK Group/ 24

  25. ROC Curves Incoherent Change Detection The ATLAS ELEKTRONIK Group/ 25

  26. ROC Curves Coherent Change Detection The ATLAS ELEKTRONIK Group/ 26

  27. ROC Curves Robustness: Best Change Detection (Incoherent) The ATLAS ELEKTRONIK Group/ 27

  28. ROC Curves Robustness: 0.5 λ The ATLAS ELEKTRONIK Group/ 28

  29. ROC Curves Robustness: 0.75 λ The ATLAS ELEKTRONIK Group/ 29

  30. ROC Curves Robustness: 1.5 λ The ATLAS ELEKTRONIK Group/ 30

  31. Results No CD CCD ICD ICD-DPCA ½ λ ICD-DPCA ¾ λ ICD-DPCA 1½ λ Summary TM 90% 6200 720 650 1100 1800 8700 TM 95% 14000 1100 780 1300 2400 12000 Var 90% 47000 5800 1600 2700 4200 11000 Var 95% 76000 10000 2000 3500 5600 18000 The ATLAS ELEKTRONIK Group/ 31

  32. Results No CD CCD ICD ICD-DPCA ½ λ ICD-DPCA ¾ λ ICD-DPCA 1½ λ Summary TM 90% 6200 720 650 1100 1800 8700 TM 95% 14000 1100 780 1300 2400 12000 Var 90% 47000 5800 1600 2700 4200 11000 Var 95% 76000 10000 2000 3500 5600 18000 • Change detection enhances detection performance by factor 10 to 40 as compared to „No CD“. The ATLAS ELEKTRONIK Group/ 32

  33. Results No CD CCD ICD ICD-DPCA ½ λ ICD-DPCA ¾ λ ICD-DPCA 1½ λ Summary TM 90% 6200 720 650 1100 1800 8700 TM 95% 14000 1100 780 1300 2400 12000 Var 90% 47000 5800 1600 2700 4200 11000 Var 95% 76000 10000 2000 3500 5600 18000 • Change detection enhances detection performance by factor 10 to 40 as compared to „No CD“. • Incoherent change detection slightly outperforms coherent change detection. The ATLAS ELEKTRONIK Group/ 33

  34. Results No CD CCD ICD ICD-DPCA ½ λ ICD-DPCA ¾ λ ICD-DPCA 1½ λ Summary TM 90% 6200 720 650 1100 1800 8700 TM 95% 14000 1100 780 1300 2400 12000 Var 90% 47000 5800 1600 2700 4200 11000 Var 95% 76000 10000 2000 3500 5600 18000 • Change detection enhances detection performance by factor 10 to 40 as compared to „No CD“. • Incoherent change detection slightly outperforms coherent change detection. • The different normalization schemes and filters have a noticeable impact on performance. The median-based normalization method without filtering performs best on well focused imagery. Lee-filtering becomes beneficial when dealing with defocused SAS imagery. The ATLAS ELEKTRONIK Group/ 34

  35. Results No CD CCD ICD ICD-DPCA ½ λ ICD-DPCA ¾ λ ICD-DPCA 1½ λ Summary TM 90% 6200 720 650 1100 1800 8700 TM 95% 14000 1100 780 1300 2400 12000 Var 90% 47000 5800 1600 2700 4200 11000 Var 95% 76000 10000 2000 3500 5600 18000 • Change detection enhances detection performance by factor 10 to 40 as compared to „No CD“. • Incoherent change detection slightly outperforms coherent change detection. • The different normalization schemes and filters have a noticeable impact on performance. The median-based normalization method without filtering performs best on well focused imagery. Lee-filtering becomes beneficial when dealing with defocused SAS imagery. • Future work aims at connecting change detection to the automatic target recognition (ATR) for which the target shadow needs be treated such that its information is preserved. The ATLAS ELEKTRONIK Group/ 35

  36. Contact ATLAS ELEKTRONIK GmbH Sebaldsbruecker Heerstrasse 235 28309 Bremen | Germany Phone: +49 421 457-02 Telefax: +49 421 457-3699 www.atlas-elektronik.com … a sound decision The ATLAS ELEKTRONIK Group/ 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend