lena a multipurpose detector for low energy neutrino
play

LENA: A multipurpose detector for low energy neutrino astronomy and - PowerPoint PPT Presentation

Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary LENA: A multipurpose detector for low energy neutrino astronomy and proton decay Teresa Marrodn Undagoitia tmarroda@ph.tum.de Institut E15


  1. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary LENA: A multipurpose detector for low energy neutrino astronomy and proton decay Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München (Germany) TAUP07 Sendai, 13.09.07 LENA Teresa Marrodán Undagoitia (TU München)

  2. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Outline Introduction to LENA 1 Liquid scintillator developments 2 3 LENA physics Outlook: LAGUNA 4 Summary 5 LENA Teresa Marrodán Undagoitia (TU München)

  3. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Physics Goals L ow E nergy N eutrino A stronomy Supernovae Neutrinos Geoneutrinos Diffuse Background of Neutrino Properties Supernovae Neutrinos Proton Decay Solar Neutrinos LENA Teresa Marrodán Undagoitia (TU München)

  4. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary LENA - Low Energy Neutrino Astronomy Size Detector scheme o 100 m length × 30 m ∅ Liquid Scintillator o ∼ 50 kton PXE Photomultipliers o 13 500 units o 30% coverage Photoelectron yield o ∼ 120 pe/MeV Underground location o ∼ 4000 m.w.e. LENA Teresa Marrodán Undagoitia (TU München)

  5. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Liquid scintillator measurements at TUM Why liquid scintillators? Enables large detector volumes Low energy threshold Good energy resolution Fast detector: good position reconstruction Particle separation ( α/β ) High cross section for ν e Experience gained with Borexino LENA Teresa Marrodán Undagoitia (TU München)

  6. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Light production Number of photons/MeV Exponential time constants o Dependence on solvent (PXE/LAB/Dodecan) o Dependence on wavelength shifter type and concentration (PPO/bisMSB/PMP) Example for PXE + 2 g/l PPO mixture LENA Teresa Marrodán Undagoitia (TU München)

  7. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Measurements of scintillator emission spectra Electrom beam excitation UV-light excitation ∼ 10 keV energy Deuterium lamp LENA Teresa Marrodán Undagoitia (TU München)

  8. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Spectra: first results Comparison of different Comparison of UV-light and wavelength shifter emission electron beam excitation spectra methods LENA Teresa Marrodán Undagoitia (TU München)

  9. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Light propagation Scattering length Angle dependence of the scattered light Study of polarized and unpolarized light Attenuation length Effects of absorption and scattering in the propagation LENA Teresa Marrodán Undagoitia (TU München)

  10. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary LENA Teresa Marrodán Undagoitia (TU München)

  11. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Proton Decay Non supersymmetric Grand Unified Theories τ ∼ 10 36 y Dominant decay mode: p → e + π 0 Supersymmetry (SUSY) τ ∼ 10 34 y Dominant decay mode: p → K + ν Superkamiokande: τ ( p → e + π 0 ) � 5 . 4 · 10 33 y (90 % C.L.) τ ( p → K + ν ) � 2 . 3 · 10 33 y (90 % C.L.) LENA Teresa Marrodán Undagoitia (TU München)

  12. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary p → K + ν Proton Decay: Background muon with 257 MeV Time Time 450 Number of photoelectrons Time Time Mean x 99.62 Mean x 99.62 500 Number of photonelectrons Mean x 100.1 Mean x 100.1 Mean y 77.67 Mean y 77.67 400 Mean y 72.08 Mean y 72.08 450 RMS x 57.73 RMS x 57.73 RMS x 58.02 RMS x 58.02 RMS y 115.2 RMS y 115.2 350 RMS y 95.85 RMS y 95.85 400 300 350 250 300 250 200 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 140 160 180 200 0 0 20 40 60 80 100 120 140 160 180 200 Time in ns Time in ns Potential of LENA ( 10 y measuring time) For Superkamiokande current limit: τ = 2 . 3 · 10 33 y 40 events in LENA and � 1 background No signal in LENA: τ > 4 · 10 34 y 90 % (C.L) Phys. Rev. D72 075014 (2005) and hep-ph/0511230 LENA Teresa Marrodán Undagoitia (TU München)

  13. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Detection of Supernovae Neutrinos 8 M ⊙ (3 · 10 53 erg) at D = 10 kpc (center of our galaxy) In LENA detector: ∼ 15000 events Possible reactions in liquid scintillator ν e + p → n + e + ; n + p → d + γ ∼ 9000 events 12 B → 12 C + e − + ν e ν e + 12 C → 12 B + e + ; ∼ 250 events ν e + 12 C → e − + 12 N ; 12 N → 12 C + e + + ν e ∼ 400 events ν x + 12 C → 12 C ∗ + ν x ; 12 C ∗ → 12 C + γ ∼ 1000 events ν x + e − → ν x + e − ∼ 700 events (elastic scattering) ν x + p → ν x + p ∼ 2000 events (elastic scattering) Diploma thesis by J.M.A. Winter (TU München) LENA Teresa Marrodán Undagoitia (TU München)

  14. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Diffuse Background of Supernovae Neutrinos In LENA detector: (44 kt f.v.) ν e -neutrino spectrum ν e + p → n + e + Event rate in 10 y: LL: ∼ 110 events TBP: ∼ 60 events (discrimination power at > 2 σ ) Phys. Rev. D75 023007 (2007) and astro-ph/0701305 Current limit: Super-Kamiokande o Energy > 19.3 MeV o Limit for the Flux: 1.2 cm − 2 s − 1 Information about Star Formation Rate for (0 < z < 1) LENA Teresa Marrodán Undagoitia (TU München)

  15. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Solar Neutrinos Rates of solar neutrino events In the LENA fiducial volume: 18 · 10 3 m 3 7 Be ν ’s: ∼ 5400 d − 1 o Small time fluctuations pep ν ’s: ∼ 150 d − 1 o Information about the pp-flux → Solar luminosity in ν ’s CNO ν ’s: ∼ 210 d − 1 o Important for heavy stars Borexino: 8 B ν ’s: CC on 13 C: ∼ 360 y − 1 technology test for LENA LENA Teresa Marrodán Undagoitia (TU München)

  16. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics APC, Paris, France Max Planck für Physik, München, Germany CEA, Saclay, France Technische Universität München, Germany CPPM, IN2P3-CBRS, Marseille, France Universidad de Granada, Spain CUPP , Pyhäsalmi, Finland Universität Hamburg, Germany ETHZ, Zürich, Switzerland University of Bern, Switzerland Institute for Nuclear Research, Moscow, University of Helsinki, Finland Russia University of Jyväskylä, Finland IPNO, Orsay, France University of Oulu, Finland LAL, IN2P3-CNRS, Orsay, France University of Padova, Italy LPNHE, IN2P3-CNRS, Paris, France University of Silesia, Katowice, Poland Max Planck für Kernphysik, Heidelberg, University of Sheffield, UK Germany LAGUNA scientific paper, arXiv: 0705.0116 [hep-ph] LENA Teresa Marrodán Undagoitia (TU München)

  17. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Physics of LAGUNA Supernovae explosion High statistics in the energy spectrum of different ν -flavours Time evolution of the neutrino emission Neutrino properties: oscillation parameters Diffuse background of supernova neutrinos Understanding of the explosion mechanism of a SN Solar neutrinos Geophysics: radioactivity of the Earth with geoneutrinos Proton decay Neutrino Properties Reactor: Precise measurement on ∆ 2 m 12 and sin 2 θ 12 Atmospheric neutrinos: Improve D 23 ≡ sin 2 θ 23 − 1 / 2 Detectors for accelerator experiments: θ 13 and δ CP LENA Teresa Marrodán Undagoitia (TU München)

  18. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary LAGUNA detector concepts MEMPHYS - MEgaton Mass PHYSics 80 m heigth × 65 m ∅ ∼ 500 kt water Cherenkov detector 81 000 PMTs per shaft (30% coverage) GLACIER - Giant Liquid Argon Charge Imaging ExpeRiment 20 m heigth × 70 m ∅ ∼ 100 kt liquid Ar TPC Light (28 000 PMTs) + charge readout LENA - Low Energy Neutrino Astronomy 100 m long × 30 m ∅ ∼ 50 kt liquid scintillator 13 500 PMTs for 30% coverage LENA Teresa Marrodán Undagoitia (TU München)

  19. Introduction to LENA Liquid scintillator developments LENA physics Outlook: LAGUNA Summary Summary Liquid scintillator developments Experiments to light production: photon yield and timing Study of light propagation: attenuation length and spectra Lena physics Good sensitivity for proton decay via p → K + ν Neutrinos from current supernova explosion Diffuse background of supernova neutrinos Solar neutrino measurements LAGUNA initiative has been presented LENA Teresa Marrodán Undagoitia (TU München)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend