lecture 1 getting started with problematic inversions
play

Lecture 1: Getting started with problematic inversions Denis - PowerPoint PPT Presentation

Eurotherm Advanced School Metti 5 Roscoff June 13-18, 2011 Lecture 1: Getting started with problematic inversions Denis Maillet, Yvon Jarny, Daniel Petit, Olivier Fudym, Philippe Le Masson LEMTA Nancy - LTN Nantes - Institut P


  1. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Lecture 1: Getting started with problematic inversions Denis Maillet, Yvon Jarny, Daniel Petit, Olivier Fudym, Philippe Le Masson LEMTA Nancy - LTN Nantes - Institut P’ Poitiers - Ecole Mines Albi - LIMATB Lorient Example 1: Square system of linear equations Example 2: Different inverse problems fo steady state 1D heat transfer through a wall 1

  2. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Example 1: Square system of linear equations − = 10 x 21 x 9 1 2 − = 39 x 81 x 1 1 2 scalar relationship → vector −       10 21 3 9 S x x y S x = = = ⇒ = = exact exact       − mo       39 81 1 36 Direct problem : input (known) output (calculated) Model : y mo = η η ( x ) η η Structure of model 2

  3. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 −     10 21 9 = = = S y S x exact     − mo     39 81 36 inverse problem : data (known) unknown   3 Solution with exact data y mo : No problem ! x S − y x = = = 1 exact   mo   1   9 . 1   0 . 1 ≈ 1 % of y mo 1 y y Solution with noisy data y : = + = ε = ε     mo −  35 . 7   0 . 3  ≈ 1 % of y mo 2 Noise amplification ! noise −       10 21 9 , 1 1 . 40 53 % error for x 1 x x x e = = + = exact ˆ       x −       39 81 35 . 7 0 . 233 77 % error for x 2 3 estimate estimation error

  4. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 1 / 2   = ∑ 2   u u  2 Euclidian distance (L2 norm) :  j   = j 1 e x x x = − exact ˆ = y − y ε estimation error mo Measurement error (noise) S − 1 ε e 1 . 774 x = = = = ε S = k a ( ) 5 . 61 absolute det ( ) 9 ε ε 0 . 316 coefficients of S ≤ = ε k ( ) cond ( ) 958 maximum: amplification of r measurement relative S − S − y e x 1 ε 1 exact / / error (leverage) 1 . 774 / 3 . 16 x mo = = = = ε k ( ) 65 . 8 4 y y r ε ε / / 0 . 316 / 37 . 11 mo mo

  5. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Example of inverse heat conduction problem (IHCP) Direct problem Computed Model( s ) Heat flux Temperatures method e s r e v n i Inverse problem Retrieved heat flux ? Measured temperatures 5

  6. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Example 2: Different inverse problems fo steady state 1D heat transfer through a wall Physical system with sensors Thermal model • plane wall for exact output of sensor T s • 2 temperature sensors: 1 on rear face (exact measurement T e ) • homogeneous material 1 inside (x = x s ; noisy measurement y) (conductivity λ ) • steady state • stimulation q (x = 0) • 1D heat transfer • no internal source • Fourier law Possible objectives (types of inverse problems) • flux q entering the wall (x = 0) ? • front face temperature T 0 ? • internal temperature distribution T (x) ? • conductivity λ ? 6

  7. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 ∂ ∂ 2 T T = − λ = = 0 with q and T T State equations: T ? ∂ = e ∂ 2 x e x x = x 0 model structure Assumption: λ known, no error for T e = = η λ ≡ − λ y T ( x ; q , T , ) T q x / no error for e and x s mo x 1 0 0 Objective: find q, T 0 , T x parameters dependent variable = η λ Output equation: T ( x ; q , T , ) or explained s 1 s 0 variable     x x x ≡ η ≡  η  = +   s s s , T , T ( x /e, T ) 1 - T T 2 2 s 0 e 0 0 e     e e e Measurement: = + ε y T Random variable s p.d.f: E ( ε ) = 0 E ( ε 2 ) = σ 2 measurement noise exact unknown temperature σ ε 0 Estimation = exact matching: estimate   x = = η η ˆ ˆ   s 7 , T , T y T ( x /e, T ) s 2 2 s 0 0 e   e

  8. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Solution of inverse problem: estimation of T 0 * 1 x = − * = ˆ s T y T with x x / e 0 e s s − * − * 1 x 1 x s s = ε − * ⇒ = σ = σ − * e / ( 1 x ) E ( e ) 0 a n d / ( 1 x ) Estimation error: T 0 s T 0 0 s Good estimation of T 0 for shallow measurement Estimation of T (x) : * * − * x x 1 - x * = η ˆ = ˆ = + s T ( x ) ( x , T ) T y T recalc 2 0 x e * * − − 1 x 1 x s s * = with x x / e Estimation error: * 1 - x = ε ⇒ σ = σ = e K K with K Tx Tx * − 1 x s 8

  9. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Two regions for estimation of T x * 1 - x ∈ • in between measurements points x [ x , e ] σ = σ = K wit h K s Tx − * 1 x interpolation = attenation of error s ≤ K 1 well-posed problem (Hadamard, 1902): - solution exists - it is unique - it depends continuously of the data [ [ ∈ • outside measurements points interval x 0 , x s extrapolation = attenation of error > K 1 ill-posed problem (Hadamard, 1902) → ⇒ → ∞ ∀ ≠ x s e K x e Very bad design ! 9

  10. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 − y T = λ Estimation of flux q : e ˆ q − e x s λ λ 1 1 = ε ⇒ σ = σ ⇒ σ = Estimation error: e / q q − q − q − * e x e x SNR 1 x s s s = e − σ SNR ( T T )/ 0 signal over noise ratio Numerical application: e = 0.2 m - λ = 1 W.m -1 .K -1 - T 0 – T e = 30° C x s = 0.18 m - σ = 0.3° C ⇒ = σ = SNR 100 and / q 10 % q mid-slab measurement: = = σ = ⇒ x e / 2 0 . 10 m / q 2 % s q 10

  11. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Errors for parameters "assumed to be known" Assumption: λ known, no error for T e no error for e error for x s Objective: find q, T 0 , T x = + δ nom x x s s nominal (« a priori ») location location of sensor error (deterministic) (random) exact location (random) σ p.d.f: E ( δ ) = 0 E ( δ 2 ) = 2 pos σ pos δ 0 11

  12. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 = η + ε = η + ε nom y ( x / e , T , T ) ( x / e , T , T ) ' Signal and model : 2 s 0 e 2 s 0 e ε = δ − + ε with ' ( T T )/ e 0 e ( ) σ = ε = σ + − 2 σ 2 2 2 Equivalent temperature noise : ' var ( ' ) ( T T ) / e 0 e pos ( ) = σ + 2 2 2 1 SNR / R pos = σ with R e / pos pos 1 1 σ = Estimation error: / q q − * 1 x SNR ' s = − σ SNR ' ( T T )/ ' e 0 Numerical application: e = 0.2 m - λ = 1 W.m -1 .K -1 - T e – T 0 = 30° C x s = 0.18 m - σ = 0.3° C - σ pos = 2 mm ⇒ SNR = 100 = σ = = R e / 200 / 2 100 pos pos ⇒ σ = / q 14 . 1 % q 12

  13. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Assumption: no error for T e λ = λ + nom exact e λ no error for e no error for x s error for λ λ λ λ nominal (« a priori ») conductivity Objective: find q, T 0 , T x conductivity error (deterministic) (random) exact conductivity Estimation of flux q : (random) − λ + exact y T e ( ) σ 2 = λ = λ − + ε nom e p.d.f: E ( e λ ) = 0 E ( e λ 2 ) = ˆ q T T λ − − s e e x e x s s   λ − ε exact  +  ( T T ) e σ λ λ   = +   s e 1 1   − λ −  exact  e x  T T  s s e Estimation error: δ 0 λ exact assumptions: - small e / λ - large SNR   ε e  λ  + = + + exact exact q e q 1   Numerical application: q − λ exact  T T  s e e = 0.2 m - λ = 1 W.m -1 .K -1 - T e – T 0 = 30° C ε e e 1 x s = 0.18 m - σ = 0.3° C - σ pos = 0 mm ⇒ = λ + q σ λ exact exact SNR σ λ = 0.1 W.m -1 .K -1 q ⇒ σ = / q 10 . 1 % 1 / 2   q σ σ 2 1   ≈ λ + q ( )   exact 2 2 13 λ q SNR exact  

  14. Eurotherm Advanced School – Metti 5 – Roscoff – June 13-18, 2011 Thank you for your attention ! 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend