learning the sampling for mri
play

Learning the Sampling for MRI Matthias J. Ehrhardt Institute for - PowerPoint PPT Presentation

Learning the Sampling for MRI Matthias J. Ehrhardt Institute for Mathematical Innovation, University of Bath, UK June 24, 2020 Joint work with: F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Sch onlieb (all Cambridge, UK), M.


  1. Learning the Sampling for MRI Matthias J. Ehrhardt Institute for Mathematical Innovation, University of Bath, UK June 24, 2020 Joint work with: F. Sherry, M. Graves, G. Maierhofer, G. Williams, C.-B. Sch¨ onlieb (all Cambridge, UK), M. Benning (Queen Mary, UK), J.C. De los Reyes (EPN, Ecuador)

  2. Outline 1) Motivation min x 1 2 � SFx − y � 2 2 + λ R ( x ) 2) Bilevel Learning min x , y f ( x , y ) x = arg min z g ( z , y ) 3) Learn sampling pattern in MRI

  3. Inverse problems Ax = y x : desired solution y : observed data A : mathematical model Goal: recover x given y

  4. Inverse problems Ax = y x : desired solution y : observed data A : mathematical model Goal: recover x given y Hadamard (1902): We call an inverse problem Ax = y well-posed if (1) a solution x ∗ exists (2) the solution x ∗ is unique (3) x ∗ depends continuously on data y . Otherwise, it is called ill-posed . Jacques Hadamard Most interesting problems are ill-posed .

  5. Example: Magnetic Resonance Imaging (MRI) Continuous model: Fourier transform � Ax ( s ) = R 2 x ( s ) exp( − ist ) dt Dicrete model: A = F ∈ C N × N T ∗ MRI scanner 2 →

  6. Example: Magnetic Resonance Imaging (MRI) Continuous model: Fourier transform � Ax ( s ) = R 2 x ( s ) exp( − ist ) dt Dicrete model: A = SF ∈ C n × N T ∗ MRI scanner 2 → Solution not unique .

  7. How to solve inverse problems? Variational regularization ( ∼ 2000) Approximate a solution x ∗ of Ax = y via � 1 � 2 � Ax − y � 2 ˆ x ∈ arg min 2 + λ R ( x ) x R regularizer : penalizes unwanted features, ensures stability and uniqueness λ regularization parameter : λ ≥ 0. If λ = 0, then an original solution is recovered. If λ → ∞ , more and more weight is given to the regularizer R . textbooks: Scherzer et al. 2008, Ito and Jin 2015, Benning and Burger 2018

  8. Example: Regularizers A. Tikhonov Tikhonov regularization ( ∼ 1960): R ( x ) = 1 2 � x � 2 2

  9. Example: Regularizers A. Tikhonov Tikhonov regularization ( ∼ 1960): R ( x ) = 1 2 � x � 2 2 Total Variation Rudin, Osher, Fatemi 1992 S. Osher R ( x ) = �∇ x � 1 H 1 ( ∼ 1960-1990?) R ( x ) = 1 2 �∇ x � 2 2 Wavelet sparsity ( ∼ 1990) R ( x ) = � W x � 1 Total Generalized Variation : Bredies, Kunisch, Pock 2010 R ( x ) = inf v �∇ x − v � 1 + β �∇ v � 1

  10. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig

  11. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig sampling S ∗ y λ = 0 λ = 1

  12. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig sampling S ∗ y λ = 10 − 4 λ = 0

  13. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig sampling S ∗ y λ = 10 − 4 λ = 0

  14. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig sampling S ∗ y λ = 10 − 3 λ = 0

  15. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig sampling S ∗ y λ = 10 − 3 λ = 0 How to choose the sampling S ? Is there an optimal sampling?

  16. Example: MRI reconstruction Compressed Sensing MRI : A = S ◦ F Lustig, Donoho, Pauly 2007 Fourier transform F , sampling Sw = ( w i ) i ∈ Ω � 1 � 2 � SFx − y � 2 x ∈ arg min ˆ 2 + λ �∇ x � 1 x Miki Lustig sampling S ∗ y λ = 10 − 3 λ = 0 How to choose the sampling S ? Is there an optimal sampling? Does the optimal sampling depend on R and λ ?

  17. Some important works on sampling for MRI Uninformed ◮ Cartesian, radial, variable density ... e.g. Lustig et al. 2007 ✓ simple to implement ✗ not tailored to application ✗ not tailored to regularizer / reconstruction method ◮ compressed sensing theory : random sampling, mostly uniform e.g. Candes and Romberg 2007 ✓ mathematical guarantees limited to few sparsity promoting regularizers: mostly ℓ 1 type ✗ ✗ specific yet uninformed class of recoverable signals: sparse

  18. Some important works on sampling for MRI Uninformed ◮ Cartesian, radial, variable density ... e.g. Lustig et al. 2007 ✓ simple to implement ✗ not tailored to application ✗ not tailored to regularizer / reconstruction method ◮ compressed sensing theory : random sampling, mostly uniform e.g. Candes and Romberg 2007 ✓ mathematical guarantees limited to few sparsity promoting regularizers: mostly ℓ 1 type ✗ ✗ specific yet uninformed class of recoverable signals: sparse Learned ◮ Largest Fourier coefficients of training set Knoll et al. 2011 ✓ simple to implement, computationally light ✗ not tailored to regularizer / reconstruction method ◮ greedy : iteratively select ”best” sample G¨ ozc¨ u et al. 2018 ✓ adaptive to dataset, regularizer / reconstruction method ✗ only discrete values, e.g. can’t learn regularization parameter ✗ computationally heavy

  19. Bilevel Learning

  20. Bilevel learning for inverse problems � 1 � 2 � Ax − y � 2 ˆ x = arg min 2 + λ R ( x ) R smooth and x strongly convex

  21. Bilevel learning for inverse problems Upper level (learning): Given ( x † , y ) , y = Ax † + ε , solve x − x † � 2 min x � ˆ 2 λ ≥ 0 , ˆ Lower level (solve inverse problem): Carola Sch¨ onlieb � 1 � 2 � Ax − y � 2 x = arg min ˆ 2 + λ R ( x ) R smooth and x strongly convex von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Sch¨ onlieb 2013

  22. Bilevel learning for inverse problems Upper level (learning): Given ( x † i =1 , y i = Ax † i , y i ) n i + ε i , solve n 1 � x i − x † i � 2 min � ˆ 2 n λ ≥ 0 , ˆ x i i =1 Lower level (solve inverse problem): Carola Sch¨ onlieb � 1 � 2 � Ax − y i � 2 x i = arg min ˆ 2 + λ R ( x ) R smooth and x strongly convex von Stackelberg 1934, Kunisch and Pock 2013, De los Reyes and Sch¨ onlieb 2013

  23. Bilevel learning: Reduced formulation Upper level : x − x † � 2 min x � ˆ 2 λ ≥ 0 , ˆ Lower level : � 1 � 2 � Ax − y � 2 x = arg min ˆ 2 + λ R ( x ) x

  24. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : � 1 � 2 � Ax − y � 2 x = arg min ˆ 2 + λ R ( x ) x

  25. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : ˆ x = arg min x L ( x , λ )

  26. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : x λ := ˆ x = arg min x L ( x , λ ) λ ≥ 0 U ( x λ ) =: ˜ Reduced formulation : min U ( λ )

  27. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : x λ := ˆ x = arg min x L ( x , λ ) ⇔ ∂ x L ( x λ , λ ) = 0 λ ≥ 0 U ( x λ ) =: ˜ Reduced formulation : min U ( λ )

  28. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : x λ := ˆ x = arg min x L ( x , λ ) ⇔ ∂ x L ( x λ , λ ) = 0 λ ≥ 0 U ( x λ ) =: ˜ Reduced formulation : min U ( λ ) 0 = ∂ 2 ∂ λ x λ = − B − 1 A x L ( x λ , λ ) ∂ λ x λ + ∂ θ ∂ x L ( x λ , λ ) ⇔

  29. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : x λ := ˆ x = arg min x L ( x , λ ) ⇔ ∂ x L ( x λ , λ ) = 0 λ ≥ 0 U ( x λ ) =: ˜ Reduced formulation : min U ( λ ) 0 = ∂ 2 ∂ λ x λ = − B − 1 A x L ( x λ , λ ) ∂ λ x λ + ∂ θ ∂ x L ( x λ , λ ) ⇔ ∇ ˜ U ( λ ) = ( ∂ λ x λ ) ∗ ∇ U ( x λ )

  30. Bilevel learning: Reduced formulation Upper level : min x U (ˆ x ) λ ≥ 0 , ˆ Lower level : x λ := ˆ x = arg min x L ( x , λ ) ⇔ ∂ x L ( x λ , λ ) = 0 λ ≥ 0 U ( x λ ) =: ˜ Reduced formulation : min U ( λ ) 0 = ∂ 2 ∂ λ x λ = − B − 1 A x L ( x λ , λ ) ∂ λ x λ + ∂ θ ∂ x L ( x λ , λ ) ⇔ ∇ ˜ U ( λ ) = ( ∂ λ x λ ) ∗ ∇ U ( x λ ) = − A ∗ B − 1 ∇ U ( x λ ) = − A ∗ w where w solves Bw = ∇ U ( x λ ).

  31. Algorithm for Bilevel learning Upper level : min λ ≥ 0 , ˆ x U (ˆ x ) Lower level : x λ := arg min x L ( x , λ ) Reduced formulation : min λ ≥ 0 U ( x λ ) =: ˜ U ( λ ) ◮ Solve reduced formulation via L-BFGS-B Nocedal and Wright 2000 ◮ Compute gradients: Given λ (1) Compute x λ , e.g. via PDHG Chambolle and Pock 2011 (2) Solve Bw = ∇ U ( x λ ), B := ∂ 2 x L ( x λ , λ ) e.g. via CG (3) Compute ∇ ˜ U ( λ ) = − A ∗ w , A := ∂ θ ∂ x L ( x λ , λ )

  32. Learn sampling pattern in MRI

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend