leaf poset and multi colored hook length property
play

Leaf poset and multi-colored hook length property . . . Masao - PowerPoint PPT Presentation

. Leaf poset and multi-colored hook length property . . . Masao Ishikawa Department of Mathematics, Faculty of Science, Okayama University S eminaire de Combinatoire et Th eorie des Nombres September 26, 2017 Institut Camille


  1. . (Shifted) diagrams . . Definition . . A partiton is a nonincreasing sequence λ = ( λ 1 , λ 2 , . . . ) of nonnegative integers with finitely many λ i unequal to zero. The length and weight of λ , denoted by ℓ ( λ ) and | λ | , are the number and sum of the non-zero λ i respectively. A strict partition is a partition in which its parts are strictly decreasing. If λ is a partition (resp. strict partition), then its diagram D ( λ ) (resp. shifted diagram S ( λ ) ) is defined by D ( λ ) = { ( i , j ) ∈ Z 2 : 1 ≤ j ≤ λ i } S ( λ ) = { ( i , j ) ∈ Z 2 : i ≤ j ≤ λ i + i − 1 } . . . . . Example (The diagram and shifted diagram for λ = ( 4 , 3 , 1 ) ) . D ( λ ) = S ( λ ) = . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  2. . (Shifted) diagrams . . Definition . . We define the order on D ( λ ) (or S ( λ ) ) by ( i 1 , j 1 ) ≥ ( i 2 , j 2 ) ⇔ i 1 ≤ i 2 and j 1 ≤ j 2 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  3. . (Shifted) diagrams . . Definition . . We define the order on D ( λ ) (or S ( λ ) ) by ( i 1 , j 1 ) ≥ ( i 2 , j 2 ) ⇔ i 1 ≤ i 2 and j 1 ≤ j 2 We rotate the Hasse diagram of the poset by 45 ◦ counterclockwise. Hence a vertex in the north-east is bigger than a vertex in south-west. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  4. . Examples . shape − → shifted shape − → . . . . . . Masao Ishikawa Leaf poset and hook length property

  5. d -complete poset . . . . . . Masao Ishikawa Leaf poset and hook length property

  6. . . . . . . d -complete poset . . Contents of this section . . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  7. . . . . . d -complete poset . . Contents of this section . . . The d -complete posets arise from the dominant 1 minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  8. . . . . d -complete poset . . Contents of this section . . . The d -complete posets arise from the dominant 1 minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras. . . Proctor gave completely combinatorial description of 2 d -complete poset, which is a graded poset with d -complete coloring. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  9. . . . d -complete poset . . Contents of this section . . . The d -complete posets arise from the dominant 1 minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras. . . Proctor gave completely combinatorial description of 2 d -complete poset, which is a graded poset with d -complete coloring. . . Proctor showed that any d -complete poset can be 3 obtained from the 15 irreducible classes by slant-sum . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  10. . . d -complete poset . . Contents of this section . . . The d -complete posets arise from the dominant 1 minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras. . . Proctor gave completely combinatorial description of 2 d -complete poset, which is a graded poset with d -complete coloring. . . Proctor showed that any d -complete poset can be 3 obtained from the 15 irreducible classes by slant-sum . . . The d -complete coloring is important for the multivariate 4 generating function. The content should be replaced by color for d -complete posets. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  11. . d -complete poset . . Contents of this section . . . The d -complete posets arise from the dominant 1 minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras. . . Proctor gave completely combinatorial description of 2 d -complete poset, which is a graded poset with d -complete coloring. . . Proctor showed that any d -complete poset can be 3 obtained from the 15 irreducible classes by slant-sum . . . The d -complete coloring is important for the multivariate 4 generating function. The content should be replaced by color for d -complete posets. . . Okada defined ( q , t ) -weight W P ( π ; q , t ) for d-compete 5 posets. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  12. . Double-tailed diamond poset . . Definition . . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  13. . Double-tailed diamond poset . . Definition . . The double-tailed diamond poset d k ( 1 ) is the poset depicted below: top k − 2 side side k − 2 bottom . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  14. . Double-tailed diamond poset . . Definition . . The double-tailed diamond poset d k ( 1 ) is the poset depicted below: top k − 2 side side k − 2 bottom A d k -interval is an interval isomorphic to d k ( 1 ) . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  15. . Double-tailed diamond poset . . Definition . . The double-tailed diamond poset d k ( 1 ) is the poset depicted below: top k − 2 side side k − 2 bottom A d k -interval is an interval isomorphic to d k ( 1 ) . A d − k -interval ( k ≥ 4 ) is an interval isomorphic to d k ( 1 ) − { top } . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  16. . Double-tailed diamond poset . . Definition . . The double-tailed diamond poset d k ( 1 ) is the poset depicted below: top k − 2 side side k − 2 bottom A d k -interval is an interval isomorphic to d k ( 1 ) . A d − k -interval ( k ≥ 4 ) is an interval isomorphic to d k ( 1 ) − { top } . A d − 3 -interval consists of three elements x , y and w such that w is covered by x and y . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  17. . . . . Definition of d -complete poset . . Definition . . A poset P is d -complete if it satisfies the following three conditions for every k ≥ 3: . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  18. . . . Definition of d -complete poset . . Definition . . A poset P is d -complete if it satisfies the following three conditions for every k ≥ 3: . . If I is a d − k -interval, then there exists an element v such 1 that v covers the maximal elements of I and I ∪ { v } is a d k -interval. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  19. . . Definition of d -complete poset . . Definition . . A poset P is d -complete if it satisfies the following three conditions for every k ≥ 3: . . If I is a d − k -interval, then there exists an element v such 1 that v covers the maximal elements of I and I ∪ { v } is a d k -interval. . . If I = [ w , v ] is a d k -interval and the top v covers u in P , 2 then u ∈ I . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  20. . Definition of d -complete poset . . Definition . . A poset P is d -complete if it satisfies the following three conditions for every k ≥ 3: . . If I is a d − k -interval, then there exists an element v such 1 that v covers the maximal elements of I and I ∪ { v } is a d k -interval. . . If I = [ w , v ] is a d k -interval and the top v covers u in P , 2 then u ∈ I . . . There are no d − k -intervals which differ only in the minimal 3 elements. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  21. . Examples . rooted tree swivel shape shifted shape . . . . . . Masao Ishikawa Leaf poset and hook length property

  22. . . . . Properties of d -complete posets . . Fact . . If P is a connected d -complete poset, then . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  23. . . . . Properties of d -complete posets . . Fact . . If P is a connected d -complete poset, then (a) P has a unique maximal element. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  24. . . . . Properties of d -complete posets . . Fact . . If P is a connected d -complete poset, then (a) P has a unique maximal element. (b) P is ranked, i.e., there exists a rank function r : P → N such that r ( x ) = r ( y ) + 1 if x covers y . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  25. . Properties of d -complete posets . . Fact . . If P is a connected d -complete poset, then (a) P has a unique maximal element. (b) P is ranked, i.e., there exists a rank function r : P → N such that r ( x ) = r ( y ) + 1 if x covers y . . . . . Fact . . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  26. . Properties of d -complete posets . . Fact . . If P is a connected d -complete poset, then (a) P has a unique maximal element. (b) P is ranked, i.e., there exists a rank function r : P → N such that r ( x ) = r ( y ) + 1 if x covers y . . . . . Fact . . (a) Any connected d -complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d -complete posets. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  27. . Properties of d -complete posets . . Fact . . If P is a connected d -complete poset, then (a) P has a unique maximal element. (b) P is ranked, i.e., there exists a rank function r : P → N such that r ( x ) = r ( y ) + 1 if x covers y . . . . . Fact . . (a) Any connected d -complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d -complete posets. (b) Slant-irreducible d -complete posets are classified into 15 families : shapes, shifted shapes, birds, insets, tailed insets, banners, nooks, swivels, tailed swivels, tagged swivels, swivel shifts, pumps, tailed pumps, near bats, bat. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  28. . . . . . . . . . . . . . Irreducible d -complete poset . . Definition (Filter) . . Let S be a subset of a poset P . If S satisfies the condition x ∈ S and y ≥ x ⇒ y ∈ S then S is said to be a filter . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  29. . . . . Irreducible d -complete poset . . Definition (Filter) . . Let S be a subset of a poset P . If S satisfies the condition x ∈ S and y ≥ x ⇒ y ∈ S then S is said to be a filter . . . . . Irreducible d -complete posets . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  30. . . . Irreducible d -complete poset . . Definition (Filter) . . Let S be a subset of a poset P . If S satisfies the condition x ∈ S and y ≥ x ⇒ y ∈ S then S is said to be a filter . . . . . Irreducible d -complete posets . . Proctor defined the notion of irreducible d -complete 1 posets and classified them into 15 families. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  31. . . Irreducible d -complete poset . . Definition (Filter) . . Let S be a subset of a poset P . If S satisfies the condition x ∈ S and y ≥ x ⇒ y ∈ S then S is said to be a filter . . . . . Irreducible d -complete posets . . Proctor defined the notion of irreducible d -complete 1 posets and classified them into 15 families. . . A filter of a d -complete poset is a d -complete poset . 2 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  32. . Irreducible d -complete poset . . Definition (Filter) . . Let S be a subset of a poset P . If S satisfies the condition x ∈ S and y ≥ x ⇒ y ∈ S then S is said to be a filter . . . . . Irreducible d -complete posets . . Proctor defined the notion of irreducible d -complete 1 posets and classified them into 15 families. . . A filter of a d -complete poset is a d -complete poset . 2 . . 1) Shapes, 2) Shifted shapes, 3) Birds, 4) Insets, 5) Tailed 3 insets, 6) Banners, 7) Nooks, 8) Swivels, 9) Tailed swivels, 10) Tagged swivels, 11) Swivel shifteds, 12) Pumps, 13) Tailed pumps, 14) Near bats, 15) Bat . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  33. . Shapes . . Definition (Shapes) . . 1) Shapes . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  34. . Shifted shapes . . Definition (Shifted shapes) . . 2) Shifted shapes . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  35. . Birds . . Definition (Birds) . . 3) Birds . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  36. . Insets . . Definition (Insets) . . 4) Insets . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  37. . Tailed insets . . Definition (Tailed insets) . . 5) Tailed insets . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  38. . Banners . . Definition (Banners) . . 6) Banners . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  39. . Nooks . . Definition (Nooks) . . 7) Nooks . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  40. . Swivels . . Definition (Swivels) . . 8) Swivels . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  41. . Tailed swivels . . Definition (Tailed swivels) . . 9) Tailed swivels . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  42. . Tagged swivels . . Definition (Tagged swivels) . . 10) Tagged swivels . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  43. . Swivel shifteds . . Definition (Swivel shifteds) . . 11) Swivel shifteds . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  44. . Pumps . . Definition (Pumps) . . 12) Pumps . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  45. . Tailed pumps . . Definition (Tailed pumps) . . 13) Tailed pumps . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  46. . Near bats . . Definition (Near bats) . . 14) Near bats . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  47. . Bat . . Definition (Bat) . . 15) Bat . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  48. . . . . Colored hook length property of d -complete posets . . Theorem (Peterson-Proctor) . . d -complete poset has the colored hook-length property. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  49. . Colored hook length property of d -complete posets . . Theorem (Peterson-Proctor) . . d -complete poset has the colored hook-length property. . . . . Remark . . Recently, Jan Soo Kim and Meesue Yoo gave a proof of the hook-length property by q -integral. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  50. Leaf Posets . . . . . . Masao Ishikawa Leaf poset and hook length property

  51. . . . . . . Leaf Posets . . Contents of this section . . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  52. . . . . . Leaf Posets . . Contents of this section . . . We define 6 family of posets, which we call the basic leaf 1 posets. (It is not possible to define “irreducibility”.) . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  53. . . . . Leaf Posets . . Contents of this section . . . We define 6 family of posets, which we call the basic leaf 1 posets. (It is not possible to define “irreducibility”.) . . Leaf poset is defined as joint-sum of the basic leaf 2 posets. (“joint-sum” is a more genral notion than the slant-sum.) . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  54. . . . Leaf Posets . . Contents of this section . . . We define 6 family of posets, which we call the basic leaf 1 posets. (It is not possible to define “irreducibility”.) . . Leaf poset is defined as joint-sum of the basic leaf 2 posets. (“joint-sum” is a more genral notion than the slant-sum.) . . Any d -complete poset is a leaf poset. 3 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  55. . . Leaf Posets . . Contents of this section . . . We define 6 family of posets, which we call the basic leaf 1 posets. (It is not possible to define “irreducibility”.) . . Leaf poset is defined as joint-sum of the basic leaf 2 posets. (“joint-sum” is a more genral notion than the slant-sum.) . . Any d -complete poset is a leaf poset. 3 . . If two posets has colored hook-length property then their 4 joint-sum has colored hook-length property. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  56. . Leaf Posets . . Contents of this section . . . We define 6 family of posets, which we call the basic leaf 1 posets. (It is not possible to define “irreducibility”.) . . Leaf poset is defined as joint-sum of the basic leaf 2 posets. (“joint-sum” is a more genral notion than the slant-sum.) . . Any d -complete poset is a leaf poset. 3 . . If two posets has colored hook-length property then their 4 joint-sum has colored hook-length property. . . The colored hook-length property of the basic leaf posets 5 . . . reduces to the Schur function identities. . . . . . . Masao Ishikawa Leaf poset and hook length property

  57. 蔦 笹 銀杏 樅 菊 藤 . Basic Leaf Posets . . Definition . . . . . . . . Masao Ishikawa Leaf poset and hook length property . . .

  58. 蔦 笹 樅 菊 藤 . Basic Leaf Posets . . Definition . . ginkgo( 銀杏 ) . . . . . . Masao Ishikawa Leaf poset and hook length property . . .

  59. 蔦 樅 菊 藤 . Basic Leaf Posets . . Definition . . bamboo( 笹 ) ginkgo( 銀杏 ) . . . . . . Masao Ishikawa Leaf poset and hook length property . . .

  60. 樅 菊 藤 . Basic Leaf Posets . . Definition . . ivy( 蔦 ) bamboo( 笹 ) ginkgo( 銀杏 ) . . . . . . Masao Ishikawa Leaf poset and hook length property . . .

  61. 樅 菊 . Basic Leaf Posets . . Definition . . ivy( 蔦 ) bamboo( 笹 ) ginkgo( 銀杏 ) wisteria( 藤 ) . . . . . . Masao Ishikawa Leaf poset and hook length property . . .

  62. 菊 . Basic Leaf Posets . . Definition . . ivy( 蔦 ) bamboo( 笹 ) ginkgo( 銀杏 ) fir( 樅 ) wisteria( 藤 ) . . . . . . Masao Ishikawa Leaf poset and hook length property . . .

  63. . Basic Leaf Posets . . Definition . . ivy( 蔦 ) bamboo( 笹 ) ginkgo( 銀杏 ) fir( 樅 ) chrysanthemum( 菊 ) wisteria( 藤 ) . . . . . . Masao Ishikawa Leaf poset and hook length property basic leaf posets. . . .

  64. . Definition . . (i) m ≥ 2, α = ( α 1 , α 2 , . . . , α m ) , β = ( β 1 , β 2 , . . . , β m ) : strict partitions γ α 1 α 2 α 3 c γ α m c γ c γ c γ = γ β 1 β 2 β 3 β m G ( α, β, γ ) := ginkgo ( 銀杏 ) . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  65. . Definition . . (ii) m ≥ 2, α = ( α 1 , α 2 , . . . , α m ) , β = ( β 1 , β 2 , . . . , β m − 1 ) , γ = ( γ 1 , γ 2 ) : strict partition, v = 1 , 2 β 1 α 1 α 2 α 3 γ 1 γ 2 α 4 c γ v α m c γ v B ( α, β, γ, v ) := c γ v β 1 β 2 β 3 β m − 1 bamboo ( 笹 ) . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  66. . Definition . . (iii) α = ( α 1 , α 2 , α 3 ) , β = ( β 1 , β 2 , β 3 , β 4 , β 5 ) , γ = ( γ 1 , γ 2 ) : β 1 α 1 strict partition for v = 1 , 2 α 2 α 3 γ 1 γ 2 γ 1 γ 2 α 1 α 2 α 3 c γ v c γ v I ( α, β, γ, v ) := β 1 β 2 β 3 β 4 β 5 ivy ( 蔦 ) . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  67. . Definition . . (iv) m ≥ 2, α = ( α 1 , α 2 , . . . , α m ) , β = ( β 1 , β 2 ) , γ = ( γ 1 , γ 2 ) : strict partition γ 1 α 1 α 2 α 3 α 4 W ( α, β, γ, v ) = α 5 β 1 β 2 γ 1 γ 2 α m β 1 β 2 c h v γ 1 γ 2 ( g 1 , g 2 , h v ) g 1 g 2 wisteria ( 藤 ).  ( β 1 , β 2 , γ v ) if m : even   :=   ( γ 1 , γ 2 , β v ) if m : odd   . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  68. . Definition β 1 α 1 . . α 2 (v) m ≥ 3, α 3 γ 1 α = ( α 1 , α 2 , α 3 ) , γ 2 α s β = ( β 1 , β 2 , . . . , β m − 1 ) , α t γ 1 γ 2 γ 1 γ 2 γ = ( γ 1 , γ 2 ) α s α t : strict partitions, γ 1 γ 2 s , t ≥ 1 (1 ≤ s < t ≤ 3), g 1 g 2  s or t if m : even ,   c hv v =   1 or 2 if m : odd  β 1 β 2 β 3 β 4 β 5 β 6 β 7 β m − 1  F ( α, β, γ, s , t , v ) = fir ( 樅 ).  ( β 1 , β 2 , α v ) if m : even   ( g 1 , g 2 , h v ) :=   ( α s , α t , γ v ) if m : odd   . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  69. . Definition . . (vi) α = ( α 1 , α 2 , α 3 ) , β = ( β 1 , β 2 , β 3 , β 4 ) and γ = ( γ 1 , γ 2 ) : strict partitions, δ ≥ 0 for v = 1 , 2 , 3 , 4 β 1 α 1 α 2 α 3 γ 1 γ 2 γ 1 γ 2 α 1 α 2 α 3 C ( α, β, γ, v ) = β 1 β 2 β 3 β 4 c β v γ 1 γ 2 chrysanthemum ( 菊 ). . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  70. . . . . . . . . . . . . . . . . . . . . . . . Goal of This Talk . . Property of leaf posets . . . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  71. . . . . . . . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  72. . . . . . . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  73. . . . . . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . 2) Shifted shapes, 6) Banners ⊆ Wisteria 2 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  74. . . . . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . 2) Shifted shapes, 6) Banners ⊆ Wisteria 2 . . 5) Tailed insets, 4) Insets ⊆ Bamboo 3 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  75. . . . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . 2) Shifted shapes, 6) Banners ⊆ Wisteria 2 . . 5) Tailed insets, 4) Insets ⊆ Bamboo 3 . . 7) Nooks, 9) Tailed swivels, 10) Tagged swivels, 11) Swivel 4 shifteds ⊆ Fir . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  76. . . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . 2) Shifted shapes, 6) Banners ⊆ Wisteria 2 . . 5) Tailed insets, 4) Insets ⊆ Bamboo 3 . . 7) Nooks, 9) Tailed swivels, 10) Tagged swivels, 11) Swivel 4 shifteds ⊆ Fir . . 8) Swivels ⊆ Ivy 5 . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  77. . . . . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . 2) Shifted shapes, 6) Banners ⊆ Wisteria 2 . . 5) Tailed insets, 4) Insets ⊆ Bamboo 3 . . 7) Nooks, 9) Tailed swivels, 10) Tagged swivels, 11) Swivel 4 shifteds ⊆ Fir . . 8) Swivels ⊆ Ivy 5 . . 12) Pumps, 13) Tailed pumps, 14) Near bats, 15) Bat ⊆ 6 Chrysanthemum . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  78. . Goal of This Talk . . Property of leaf posets . . . Any d -complete poset is a leaf poset. 1 . . 1) Shapes, 3) Birds ⊆ Ginkgo 1 . . 2) Shifted shapes, 6) Banners ⊆ Wisteria 2 . . 5) Tailed insets, 4) Insets ⊆ Bamboo 3 . . 7) Nooks, 9) Tailed swivels, 10) Tagged swivels, 11) Swivel 4 shifteds ⊆ Fir . . 8) Swivels ⊆ Ivy 5 . . 12) Pumps, 13) Tailed pumps, 14) Near bats, 15) Bat ⊆ 6 Chrysanthemum . . . . Theorem . . A leaf poset has multi-colored hook length property. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  79. . Schur Function . . Definition (Schur Function) . . If λ = ( λ 1 , . . . , λ n ) is a partition of length ≤ n , then � x λ 1 + n − 1 x λ n � . . . � � � � 1 1 � � . . ... � � . . � � . . � � � � � � x λ 1 + n − 1 x λ n . . . � � � � n n s λ ( x 1 , . . . , x n ) = . x n − 1 � � . . . 1 � � � 1 � � . . � ... � . . � � . . � � � � � x n − 1 � � . . . 1 � � n The Schur functions are the irreducible characters of the polynomial representations of the General Linear Group. . . . . . . . . . Masao Ishikawa Leaf poset and hook length property

  80. . . . . . . . . . . Symmetric Functions . . Theorem (Cauchy’s formula) . If n is a positive integer, then n n 1 ∑ ∏ ∏ s λ ( x 1 , . . . , x n ) s λ ( y 1 , . . . , y n ) = . 1 − x i y j i = 1 j = 1 . λ . . . . . . Masao Ishikawa Leaf poset and hook length property

  81. . Symmetric Functions . . Theorem (Cauchy’s formula) . If n is a positive integer, then n n 1 ∑ ∏ ∏ s λ ( x 1 , . . . , x n ) s λ ( y 1 , . . . , y n ) = . 1 − x i y j i = 1 j = 1 . λ . Proposition . If n is a positive integer, then n 1 ∏ ∑ h r ( x 1 , . . . , x n ) t n , = 1 − tx i j = 1 r ≥ 0 n n ∏ ∑ e r ( x 1 , . . . , x n ) t n ( 1 + tx i ) = j = 1 r = 0 where h r is the complete symmetric function and e r is the elementary symmetric function. . . . . . . . Masao Ishikawa Leaf poset and hook length property

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend