large time step and asymptotic preserving numerical
play

Large time-step and asymptotic-preserving numerical schemes for - PowerPoint PPT Presentation

L -P - R L


  1. L  -P      -   R    L   S           P  EDP-N  2011 Large time-step and asymptotic-preserving numerical schemes for hyperbolic systems with sources C. Chalons ∗ , M. Girardin ∗∗ ∗ Université Paris Diderot-Paris 7, France ∗∗ CEA-Saclay, France 25-26 Octobre 2011 1 / 41

  2. L  -P      -   R    L   S           P  I  This work is motivated by the study of two-phase flows involved in nuclear reactors in nominal, incidental or accidental conditions Several models and approaches : "Micro"-scale models : fine description of liquid / vapor interface topologies "Macro"-scale models : two-phase flow described as a mixture at thermodynamical equilibrium "Middle"-scale models : the so-called bi-fluid approach, takes into account desequilibrium between both phases We are interested in the numerical approximation of one particular bi-fluid averaged model, the so-called 7 -equation or Baer-Nunziato like model 2 / 41

  3. L  -P      -   R    L   S           P  T  7-   In one space dimension, the model reads ∂α k ∂α k  ∂ x = Θ ( p k − p l ) ,  ∂ t + u I            ∂ t ( α k ̺ k ) + ∂ ∂    ∂ x ( α k ̺ k u k ) = 0 ,          ∂ t ( α k ̺ k u k ) + ∂ ∂ ∂α k   ∂ x ( α k ( ̺ k u 2  k + p k )) − p I ∂ x = α k ̺ k g − Λ ( u k − u l ) ,            ∂ t ( α k ̺ k e k ) + ∂ ∂ ∂α k    ∂ x ( α k ( ̺ k e k + p k ) u k ) − p I u I ∂ x = α k ̺ k gu k − p I Θ ( p k − p l ) − u I Λ ( u k − u l )    with α 1 + α 2 = 1 u I , p I : interfacial velocity and pressure (to be precised) We note that the system is nonconservative , with short form ∂ U ∂ t + ∂ ∂ x F ( U ) + B ( U ) ∂ U ∂ x = S ( U ) 3 / 41

  4. L  -P      -   R    L   S           P  T  7-   In 1 D and dimensionless form, the model reads ∂α k ∂α k  ∂ t + u I ∂ x = Θ ( p k − p l ) ,             ∂ t ( α k ̺ k ) + ∂ ∂    ∂ x ( α k ̺ k u k ) = 0 ,          ∂ t ( α k ̺ k u k ) + ∂ ∂ ∂α k   ∂ x ( α k ( ̺ k u 2  k + p k )) − p I ∂ x = α k ̺ k g − Λ ( u k − u l ) ,            ∂ t ( α k ̺ k e k ) + ∂ ∂ ∂α k    ∂ x ( α k ( ̺ k e k + p k ) u k ) − p I u I ∂ x = α k ̺ k u k g − p I Θ ( p k − p l ) − u I Λ ( u k − u l )    We assume that the drag force and pressure relaxation coe ffi cients are given by Θ = θ ( U ) Λ = λ ( U ) ǫ 2 | u 1 − u 2 | ǫ 2 for a small parameter ǫ . Then we have p 2 − p 1 = O ( ǫ 2 ) , u 2 − u 1 = O ( ǫ ) 4 / 41

  5. L  -P      -   R    L   S           P  A   Following the Chapman-Enskog method, assume that � p r = p 1 − p 2 = 0 + ǫ p 1 r + O ( ǫ 2 ) u r = u 1 − u 2 = 0 + ǫ u 1 r + O ( ǫ 2 ) and set  ρ = α 1 ρ 1 + α 2 ρ 2     ρ u = α 1 ρ 1 u 1 + α 2 ρ 2 u 2    ρ e = α 1 ρ 1 e 1 + α 2 ρ 2 e 2      ρ Y = α 2 ρ 2   Theorem. A first-order approximation w.r.t. ǫ of the 7-equation model is given by the following di ff erential drift-flux model  ∂ t ρ + ∂ x ρ u = 0    ∂ t ρ Y + ∂ x ( ρ Yu + ρ Y (1 − Y ) u r ) = 0     ∂ t ρ u + ∂ x ( ρ u 2 + p + ρ Y (1 − Y ) u 2 r ) = ρ g      ∂ t ρ e + ∂ x ( ρ eu + pu + ρ Y (1 − Y ) u 2  r u ) = ρ gu  with u r given by the (Darcy-like) di ff erential closure relation | u r | u r = ρ Y ( ρ − ρ Y ) ( 1 − 1 ) ∂ x p Λ ρ 1 ρ 2 ρ See Ambroso-Chalons-Coquel-Galié-Godlewski-Raviart-Seguin, CMS 2008 5 / 41

  6. L  -P      -   R    L   S           P  M   Eigenvalues of the Jacobian matrix F ′ ( U ) + B ( U ) are always real and given by u I u k u k ± c k k = 1 , 2 where c k is the sound speed of phase k t u 1 u I u 2 u k − c k u k + c k U L U R x Riemann solutions are not known and di ffi cult to calculate / approximate Pressure laws may be strongly non linear, even tabulated Resonance occurs if u I = u k ± c k The model is not conservative... 6 / 41

  7. L  -P      -   R    L   S           P  O  Note that : Time-step CFL restrictions are naturally based on acoustic waves (that are not predominant here, too bad !) k , u ( | u k ± c k | , | u k | , | u I | ) ∆ t ∆ x ≤ 1 max 2 Flows are subsonic and / or with low Mach number in nuclear reactors Our objective is to propose a numerical scheme : able to deal with any equation of state and any choice ( u I , p I ) stable under a more adapted time-step CFL restriction based on transport waves (that are predominant here so that accuracy is required) k , u ( | u k | , | u I | ) ∆ t ∆ x ≤ 1 max 2 and asymptotic-preserving 7 / 41

  8. L  -P      -   R    L   S           P  T   -        As a first-step, we consider the following model  ∂ t ̺ + ∂ x ̺ u = 0 ,   ∂ t ̺ u + ∂ x ( ̺ u 2 + p ) = ̺ g − ̺α    ǫ u ,    ∂ t ( ̺ E ) + ∂ x ( ̺ Eu + pu ) = ̺ ug − ̺α   ǫ u 2     for a small parameter ǫ . Then we have u = O ( ǫ ) Recall that : Eigenvalues are given by u − c u u + c where c is the sound speed Pressure laws may be strongly non linear, even tabulated, which makes di ffi cult the resolution Time-step CFL restrictions are naturally based on acoustic waves in Godunov-type schemes u ( | u ± c | , | u | ) ∆ t ∆ x ≤ 1 max 2 8 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend