kontsevich penner model and open intersection numbers
play

Kontsevich-Penner model and open intersection numbers Geometry of - PowerPoint PPT Presentation

Kontsevich-Penner model and open intersection numbers Geometry of Integrable Systems SISSA, Trieste, 7-9 June 2017 Giulio Ruzza, SISSA Joint work with Marco Bertola, SISSA/Concordia University Moduli spaces of Riemann surfaces M g , n = {


  1. Kontsevich-Penner model and open intersection numbers Geometry of Integrable Systems SISSA, Trieste, 7-9 June 2017 Giulio Ruzza, SISSA Joint work with Marco Bertola, SISSA/Concordia University

  2. Moduli spaces of Riemann surfaces M g , n = { stable compact Riemann surfaces of genus g with n marked points } / isomorphism (Deligne and Mumford, 1969). M g , n is a compact smooth complex orbifold. • • dim C M g , n = 3 g − 3 + n . Stability condition: 2 g − 2 + n > 0.

  3. Moduli spaces of Riemann surfaces M g , n = { stable compact Riemann surfaces of genus g with n marked points } / isomorphism (Deligne and Mumford, 1969). M g , n is a compact smooth complex orbifold. • • dim C M g , n = 3 g − 3 + n . Stability condition: 2 g − 2 + n > 0.

  4. Free energy and Witten-Kontsevich theorem Psi classes ψ i := c 1 ( L i ) ∈ H 2 � � M g , n , Q , L i tautological line bdle of cotangent spaces at the i − th marked point. Intersection numbers � � τ d 1 ··· τ dn � = � τ r 0 0 τ r 1 M g , n ψ d 1 1 ∧···∧ ψ dn 1 ··· � := ( r j = ♯ { i : d i = j } ) n Generating function � � tr 0 0 tr 1 exp � = � t 3 t 2 t 2 1 ··· 0 t 3 � τ r 0 0 τ r 1 6 + t 1 24 + t 0 t 2 F ( t 0 , t 1 ,... ):= 1 ··· � r 0 ! r 1 ! ··· = 0 24 + 24 + 1 48 + ··· t j τ j r ∗ j ≥ 0 Theorem (E. Witten - M. Kontsevich, 1991) exp F is a KdV tau function. In particular U := ∂ t 0 F satisfies ∂ 3 U ∂ U = U ∂ U + 1 ∂ t 1 ∂ t 0 12 ∂ t 3 0

  5. Free energy and Witten-Kontsevich theorem Psi classes ψ i := c 1 ( L i ) ∈ H 2 � � M g , n , Q , L i tautological line bdle of cotangent spaces at the i − th marked point. Intersection numbers � � τ d 1 ··· τ dn � = � τ r 0 0 τ r 1 M g , n ψ d 1 1 ∧···∧ ψ dn 1 ··· � := ( r j = ♯ { i : d i = j } ) n Generating function � � tr 0 0 tr 1 exp � = � t 3 t 2 t 2 1 ··· 0 t 3 � τ r 0 0 τ r 1 6 + t 1 24 + t 0 t 2 F ( t 0 , t 1 ,... ):= 1 ··· � r 0 ! r 1 ! ··· = 0 24 + 24 + 1 48 + ··· t j τ j r ∗ j ≥ 0 Theorem (E. Witten - M. Kontsevich, 1991) exp F is a KdV tau function. In particular U := ∂ t 0 F satisfies ∂ 3 U ∂ U = U ∂ U + 1 ∂ t 1 ∂ t 0 12 ∂ t 3 0

  6. Free energy and Witten-Kontsevich theorem Psi classes ψ i := c 1 ( L i ) ∈ H 2 � � M g , n , Q , L i tautological line bdle of cotangent spaces at the i − th marked point. Intersection numbers � � τ d 1 ··· τ dn � = � τ r 0 0 τ r 1 M g , n ψ d 1 1 ∧···∧ ψ dn 1 ··· � := ( r j = ♯ { i : d i = j } ) n Generating function � � tr 0 0 tr 1 exp � = � t 3 t 2 t 2 1 ··· 0 t 3 � τ r 0 0 τ r 1 6 + t 1 24 + t 0 t 2 F ( t 0 , t 1 ,... ):= 1 ··· � r 0 ! r 1 ! ··· = 0 24 + 24 + 1 48 + ··· t j τ j r ∗ j ≥ 0 Theorem (E. Witten - M. Kontsevich, 1991) exp F is a KdV tau function. In particular U := ∂ t 0 F satisfies ∂ 3 U ∂ U = U ∂ U + 1 ∂ t 1 ∂ t 0 12 ∂ t 3 0

  7. Free energy and Witten-Kontsevich theorem Psi classes ψ i := c 1 ( L i ) ∈ H 2 � � M g , n , Q , L i tautological line bdle of cotangent spaces at the i − th marked point. Intersection numbers � � τ d 1 ··· τ dn � = � τ r 0 0 τ r 1 M g , n ψ d 1 1 ∧···∧ ψ dn 1 ··· � := ( r j = ♯ { i : d i = j } ) n Generating function � � tr 0 0 tr 1 exp � = � t 3 t 2 t 2 1 ··· 0 t 3 � τ r 0 0 τ r 1 6 + t 1 24 + t 0 t 2 F ( t 0 , t 1 ,... ):= 1 ··· � r 0 ! r 1 ! ··· = 0 24 + 24 + 1 48 + ··· t j τ j r ∗ j ≥ 0 Theorem (E. Witten - M. Kontsevich, 1991) exp F is a KdV tau function. In particular U := ∂ t 0 F satisfies ∂ 3 U ∂ U = U ∂ U + 1 ∂ t 1 ∂ t 0 12 ∂ t 3 0

  8. Kontsevich matrix integral � � � i M 3 3 − M 2 Y H n d M exp Tr � Z n ( Y ) := H n d M exp Tr ( − M 2 Y ) H n = R n 2 = n × n hermitian matrices, Y = diag ( y 1 , ..., y n ) . • Z n ( Y ) is a KdV tau function in Miwa variables 2 − 2 k + 1 3 ( 2 k + 1 )!! Tr Y − ( 2 k + 1 ) T k ( Y ) := − • Feynman diagramatic expansion as n → ∞ for large Y of log Z n ( Y ) is F ( t 0 ( Y ) , t 1 ( Y ) , ... ) where t k ( Y ) := − 2 − 2 k + 1 3 ( 2 k − 1 )!! Tr Y − ( 2 k + 1 )

  9. Kontsevich matrix integral � � � i M 3 3 − M 2 Y H n d M exp Tr � Z n ( Y ) := H n d M exp Tr ( − M 2 Y ) H n = R n 2 = n × n hermitian matrices, Y = diag ( y 1 , ..., y n ) . • Z n ( Y ) is a KdV tau function in Miwa variables 2 − 2 k + 1 3 ( 2 k + 1 )!! Tr Y − ( 2 k + 1 ) T k ( Y ) := − • Feynman diagramatic expansion as n → ∞ for large Y of log Z n ( Y ) is F ( t 0 ( Y ) , t 1 ( Y ) , ... ) where t k ( Y ) := − 2 − 2 k + 1 3 ( 2 k − 1 )!! Tr Y − ( 2 k + 1 )

  10. Kontsevich matrix integral � � � i M 3 3 − M 2 Y H n d M exp Tr � Z n ( Y ) := H n d M exp Tr ( − M 2 Y ) H n = R n 2 = n × n hermitian matrices, Y = diag ( y 1 , ..., y n ) . • Z n ( Y ) is a KdV tau function in Miwa variables 2 − 2 k + 1 3 ( 2 k + 1 )!! Tr Y − ( 2 k + 1 ) T k ( Y ) := − • Feynman diagramatic expansion as n → ∞ for large Y of log Z n ( Y ) is F ( t 0 ( Y ) , t 1 ( Y ) , ... ) where t k ( Y ) := − 2 − 2 k + 1 3 ( 2 k − 1 )!! Tr Y − ( 2 k + 1 )

  11. The Riemann-Hilbert problem Question Z n is genuinely analytic for Re y k > 0. Does F represent an asymptotic expansion? Answer: consider RHP in the λ -plane � M 1 Γ ( n ) + = Γ ( n ) − M j Γ ( n ) ( λ ) ∼ λ − σ 3 2 ( 1 + O ( λ − 1 4 1 + i σ 1 2 )) λ → ∞ √ M 3 M 0 M j := D − 1 − e − θ − S j e θ + D + � 0 1 � M 2 S 0 := [ 1 1 0 1 ] S 1 := [ 1 0 1 1 ] S 2 := S 3 := [ 1 0 1 1 ] − 1 0 � √ � √ n � θ := 2 λ j + λ 3 0 2 σ 3 √ 3 λ D := √ λ j − λ 0 j = 1

  12. The Riemann-Hilbert problem Question Z n is genuinely analytic for Re y k > 0. Does F represent an asymptotic expansion? Answer: consider RHP in the λ -plane � M 1 Γ ( n ) + = Γ ( n ) − M j Γ ( n ) ( λ ) ∼ λ − σ 3 2 ( 1 + O ( λ − 1 4 1 + i σ 1 2 )) λ → ∞ √ M 3 M 0 M j := D − 1 − e − θ − S j e θ + D + � 0 1 � M 2 S 0 := [ 1 1 0 1 ] S 1 := [ 1 0 1 1 ] S 2 := S 3 := [ 1 0 1 1 ] − 1 0 � √ � √ n � θ := 2 λ j + λ 3 0 2 σ 3 √ 3 λ D := √ λ j − λ 0 j = 1

  13. Kontsevich matrix integral as isomonodromic tau function The jumps of Ψ n := Γ n e − θ D − 1 do not depend on λ, λ 1 , ..., λ n ⇒ isomonodromy equations � ∂ ∂λ Ψ n ( λ ; λ 1 , ..., λ n ) = A n ( λ ; λ 1 , ..., λ n )Ψ n ( λ ; λ 1 , ..., λ n ) ∂ ∂λ j Ψ n ( λ ; λ 1 , ..., λ n ) = U n , j ( λ ; λ 1 , ..., λ n )Ψ n ( λ ; λ 1 , ..., λ n ) ⇒ isomonodromic tau function τ n ( λ 1 , ..., λ n ) (M. Jimbo, T. Miwa and K. Ueno, 1981) ∂ log τ n ( λ 1 , ..., λ n ) = res λ = λ j d λ Tr A 2 n ( λ ; λ 1 , ..., λ n ) ∂λ j Theorem (M. Bertola - M. Cafasso, 2016) τ n ( λ 1 , ..., λ n ) = Z n ( Y ) , λ j = y 2 j .

  14. Kontsevich matrix integral as isomonodromic tau function The jumps of Ψ n := Γ n e − θ D − 1 do not depend on λ, λ 1 , ..., λ n ⇒ isomonodromy equations � ∂ ∂λ Ψ n ( λ ; λ 1 , ..., λ n ) = A n ( λ ; λ 1 , ..., λ n )Ψ n ( λ ; λ 1 , ..., λ n ) ∂ ∂λ j Ψ n ( λ ; λ 1 , ..., λ n ) = U n , j ( λ ; λ 1 , ..., λ n )Ψ n ( λ ; λ 1 , ..., λ n ) ⇒ isomonodromic tau function τ n ( λ 1 , ..., λ n ) (M. Jimbo, T. Miwa and K. Ueno, 1981) ∂ log τ n ( λ 1 , ..., λ n ) = res λ = λ j d λ Tr A 2 n ( λ ; λ 1 , ..., λ n ) ∂λ j Theorem (M. Bertola - M. Cafasso, 2016) τ n ( λ 1 , ..., λ n ) = Z n ( Y ) , λ j = y 2 j .

  15. Formulae for closed intersection numbers Theorem (M. Bertola - B. Dubrovin - D. Yang, 2015) Let � − � ( 6 g − 5 )!! ( 6 g − 1 )!! 24 g − 1 ( g − 1 )! λ − 6 g + 4 24 g g ! λ − 6 g  − 1  2   g ≥ 1 g ≥ 0   Θ( λ ) := � �     6 g + 1 ( 6 g − 1 )!! ( 6 g − 5 )!! 24 g g ! λ − 6 g + 2 1 24 g − 1 ( g − 1 )! λ − 6 g + 4     6 g − 1 2   g ≥ 0 g ≥ 1 � � � ∞ � n ( 2 kj + 1 )!! F n ( λ 1 ,...,λ n ):= τ kj j = 1 2 kj + 1 k 1 ,..., kn = 0 λ j Then � ∞ ( 6 g − 3 )!! 24 g g ! λ − 6 g + 2 F 1 ( λ )= g = 1 Tr ( Θ ( λσ ( 1 ) ) ··· Θ ( λσ ( n ) )) � λ 2 1 + λ 2 F n ( λ 1 ,...,λ n )= − 1 � − δ n , 2 2 n ≥ 2 n � 2 ( λ 2 2 ) λ 2 σ ( j ) − λ 2 1 − λ 2 σ ∈ Sn � j ∈ Z / n Z σ ( j + 1 )

  16. Moduli spaces of open Riemann surfaces M g , k , l =moduli spaces of open (i.e. with boundary ) Riemann surfaces ( g = doubled genus, k = ♯ bdry markings, l = ♯ int. markings). Rigorous study initiated by Pandharipande, Solomon and Tessler, 2015. • • • • Main challenges: M g , k , l is a real orbifold with real boundary, possibly nonorientable ⇒ difficulties in the definition of intersection numbers. dim R M g , k , l = 3 g − 3 + k + 2 l . Stability condition : 2 g − 2 + k + 2 l > 0.

  17. Moduli spaces of open Riemann surfaces M g , k , l =moduli spaces of open (i.e. with boundary ) Riemann surfaces ( g = doubled genus, k = ♯ bdry markings, l = ♯ int. markings). Rigorous study initiated by Pandharipande, Solomon and Tessler, 2015. • • • • Main challenges: M g , k , l is a real orbifold with real boundary, possibly nonorientable ⇒ difficulties in the definition of intersection numbers. dim R M g , k , l = 3 g − 3 + k + 2 l . Stability condition : 2 g − 2 + k + 2 l > 0.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend