kondo problem to heavy fermions and local quantum
play

Kondo problem to heavy fermions and local quantum criticality - PowerPoint PPT Presentation

Kondo problem to heavy fermions and local quantum criticality (Experiment I) F. Steglich MPI for Chemical Physics of Solids, 01187 Dresden, Germany outline : Kondo effect Superconductivity vs. magnetism Heavy fermions Heavy-fermion


  1. Kondo problem to heavy fermions and local quantum criticality (Experiment I) F. Steglich MPI for Chemical Physics of Solids, 01187 Dresden, Germany outline : Kondo effect Superconductivity vs. magnetism Heavy fermions Heavy-fermion superconductors

  2. 1930: T- dependence of the electrical resistivity in pure metals?

  3. ≤ 1970: Noble metals with transition-metal impurities D.K.C. MacDonald et al., Proc. Roy. Soc. A266 , 161 (1962) resistivity susceptibility Curie Weiss law χ (T) ~ (T + θ ) -1 , θ = f (T K ) > 0 effective moment µ eff (T): 2 μ χ (T) ~ (T)/T eff T  0 µ eff (T)  0 Kondo effect: (J. Kondo 1964)

  4. Incremental specific heat of Cu 1-x M x (M: Cr, Fe): Δ C(T) = C(T) – C Cu (T) per mole M: Δ C(T)/x = γ T γ Cu Cr Cu Fe 2 Cr [J/K -mole ] Fe 16 1.0 T = T K : local Fermi liquid (P. Nozières 1974)

  5. > 1970: Rare earth impurities K. Winzer, Z. Phys. 265 , 139 (1973) J. Moeser, F. Steglich, G.v. Minnigerode resistivity J. Low Temp. Phys. 15 , 9 (1974) giant thermoelectric power (La 1-x Ce x )Al 2 Gorter-Nordheim: x = 0.00626 ρ − ρ − ρ ( ) T S [ ( ) T ( )] T S re-entrant superconductivity = ce La S ce ρ ( ) T ce

  6. outline : Kondo effect Superconductivity vs. magnetism Heavy fermions Heavy-fermion superconductors

  7. Superconductivity vs. magnetism IA VIIIA 1 2 1.008 IIA H He IIIA IVA VA VIA VIIA 4.003 10 3 4 5 6 7 8 9 Li Be Ne .012 B C N O F 6.941 9 10.81 1 2.01 14.01 1 6.00 1 9.00 20.18 1 2 3 4 5 6 7 18 1 1 1 1 1 1 1 Na Mg Al Si P S Cl Ar VIIIB 4.31 IIIB IVB VB VIB VIIB IB IIB 22.99 2 26.98 2 8.09 30.97 3 2.07 3 5.45 39.95 1 9 2 0 2 1 2 2 23 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 4 0.08 44.96 4 7.87 50.94 5 2.00 5 4.94 5 5.85 58.93 5 8.69 6 3.55 65.39 69.72 7 2.61 74.92 7 8.96 7 9.90 83.80 3 7 3 8 3 9 4 0 41 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 54 Rb Sr Zr Nb Tc Ru Rh Pd Ag Cd In Sn Sb Te Xe Y Mo I 85.47 7.62 88.91 1.22 92.91 5.94 01.1 102.9 06.4 07.9 112.4 114.8 18.7 121.8 27.6 26.9 131.3 8 9 9 (98) 1 1 1 1 1 1 5 6 7 2 73 4 5 6 7 8 9 0 1 2 3 4 5 86 5 5 5 7 7 7 7 7 7 7 8 8 8 8 8 8 Cs Ba La Hf Ta Re Au Hg Tl Pb Bi Po At Rn W Os Ir Pt 132.9 37.3 138.9 78.5 180.9 83.8 86.2 90.2 192.2 95.1 97.0 200.6 204.4 07.2 209.0 209) 210) (222) 1 1 1 1 1 1 1 2 ( ( 8 7 8 8 8 9 104 1 05 106 1 07 1 08 1 09 Fr Ra Ac Rf Db Sg Bh Hs Mt (223) 226) (227) 261) (262) 266) 264) 269) (268) ( ( ( ( ( 8 59 0 1 2 3 4 5 6 7 8 9 0 1 5 6 6 6 6 6 6 6 6 6 6 7 7 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 1 40.1 140.9 1 44.2 ( 145) 1 50.4 152.0 1 57.3 1 58.9 162.5 164.9 1 67.3 168.9 1 73.0 1 75.0 9 0 91 9 2 9 3 9 4 9 5 9 6 9 7 9 8 9 9 100 1 01 102 103 Th Np Pu Am Cm Bk Cf No Lr Pa U Es Fm Md 32.0 (231) 38.0 237) 244) (243) 247) 247) (251) (252) 257) (258) 259) 262) 2 2 ( ( ( ( ( ( (

  8. T c of La 0.99 RE 0.01

  9. Pairbreaking by magnetic impurities (theory) H int = 2 J S . s α ~ x S(S + 1) J > 0 T K ~ T F exp (-1/N F J) π + 2 S ( S 1 ) α ~ x + π + ln 2 ( T / T ) 2 ( S ( S 1 ) K

  10. Pairbreaking by magnetic impurities (experiment)

  11. outline : Kondo effect Superconductivity vs. magnetism Heavy fermions Heavy-fermion superconductors

  12. Volume dependence of Kondo effect, cf.[(La 1-z Y z ) 1-x Ce x ]Al 2 F.S., Adv. Solid State Phys. (1977), F.S. et al., Physica 86-88B , 503 (1977). Vol. XVII, p.319. v = ( V V ) /( V ) - - V T<< T K : Δρ = ρ 0 (1-AT 2 ) LaAl YAl LaAl 2 2 2 T K increases by a factor of 250 A = π 2 /(4 ) 2 T K ≈ 0.3 CeAl 2 (x = 1): v (M. Larsen '75) ⇒ T K ≈ 5 K

  13. Specific heat of CeAl 2 γ = 0.135 J/K 2 mole F. S. et al., C.D. Bredl et al., J. Phys. (Paris) 40 , C5-301 (1979). Z. Phys. B 29 , 327 (1978).

  14. γ = 1.62 J/K 2 mole A = 35 µ Ω cm/K 2

  15. Superconductivity in CeCu 2 Si 2 100 at% Ce 3+ ions necessary for superconductivity (LaCu 2 Si 2 is not a superconductor)

  16. Heavy-Fermion metals T >> T K (10 ... 100 K) m v F ≈ 10 6 s T << T K : Heavy electrons ("composite fermions") m v F * ≈ 10 3 s → m* ≈ 1000 m el : "strongly correlated electron system" Groundstate properties - Heavy Landau Fermi liquid (LFL) : CeCu 6 - Non-Fermi liquid (NFL) : YbRh 2 Si 2 - Magnetic order : NpBe 13 - Superconductivity : UPd 2 Al 3

  17. outline : Kondo effect Superconductivity vs. magnetism Heavy fermions Heavy-fermion superconductors

  18. Superconductivity in CeCu 2 Si 2 100 at% Ce 3+ ions necessary for superconductivity (LaCu 2 Si 2 is not a superconductor)

  19. Heavy-fermion superconductivity in CeCu 2 Si 2

  20. Heavy-fermion superconductivity in UBe 13

  21. Heavy-fermion superconductivity in UPt 3

  22. Heavy-fermion superconductivity in URu 2 Si 2 [W. Schlabitz et al., Poster ICVF, Cologne 1984 (unpublished)] cf. also, T.T.M. Palstra et al., PRL 55 , 2727 (1985) M.B. Maple et al., PRL 56 , 185 (1986).

  23. Heavy-fermion superconductors T c (K) T c (K) CeCu 2 Si 2 0.6 ('79 DA/K) PrOs 4 Sb 12 1.85 ('01 UCSD) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi 2 Ge 2 0.2 ('97 DA, '98 CA/GR) 0.08 ( ' 08 TO/IR) β -YbAlB 4 CeIrIn 5 0.4 ('00 LANL) CeCoIn 5 2.3 ('00 LANL) p > 0 Ce 2 CoIn 8 0.4 ('02 NA) Eu metal 1.8-2.8 (’09 SL, OS) Ce 2 PdIn 8 0.7 ('09 WR) CePt 3 Si 0.7 ('03 VI) UBe 13 0.9 ('83 Z/LANL) p > 0 UPt 3 0.5 ('84 LANL) CeCu 2 Ge 2 0.6 ('92 GE) URu 2 Si 2 1.4 ('84 K/DA) CePd 2 Si 2 0.4 ('94 CA) UNi 2 Al 3 1.2 ('91 DA) CeRh 2 Si 2 0.4 ('95 LANL) UPd 2 Al 3 2.0 ('91 DA) CeCu 2 0.15 ('97 GE/KA) URhGe 0.3 ('01 GR) UCoGe 3.0 ('07 AM/KA) CeIn 3 0.2 ('98 CA) p > 0 CeRhIn 5 2.1 ('00 LANL) UGe 2 0.7 ('00 CA/GR) Ce 2 RhIn 8 1.1 ('03 LANL) UIr 0.14 ('04 OS) CeRhSi 3 0.8 ('05 SE) CeIrSi 3 1.6 ('06 OS) NpPd 5 Al 2 5.0 ('07 OS) CeCoGe 3 0.7 ('06 OS) Ce 2 Ni 3 Ge 5 0.26 ('06 OS) PuCoGa 5 18.5 ('02 LANL) CeNiGe 3 0.4 ('06 OS) PuRhGa5 8.7 ('03 KA) CePd 5 Al 2 0,57 (‘08 OS) p > 0 CeRhGe 2 0.45 ('09 OS) Am metal 2.2 ('05 KA) CePt 2 In 7 2.1 (‘10 LANL) CeIrGe 3 1.5 (’10 OS)

  24. Magnetic Cooper pairing in UPd 2 Al 3 C. Geibel et. al., 1991 ≈ 14 K T magn ≈ 0.85 µ B µ s γ ≈ 140 mJ/K 2 mol ≈ 2 K T c 2 ∆ 0 /k B T c ≈ 6 (Kyougaku et al., 1993) • Two more localized ("core") electrons: magnetism • one less localized ("heavy" itinerant) electron: U 3+ (5f 3 ) heavy LFL state (T c < T < T N ) coexisting with local AF heavy-fermion SC (T < T c )

  25. Quasiparticle tunneling [M. Jourdan et. al., Nature 398, 47 (1999)] tunnel diode UPd 2 Al 3 - AlO x - Pb (Pb normal conducting : B = 0.3 T) dI/dV (T = 0.15 K)

  26. Inelastic neutron scattering [N.K. Sato et al., Nature 410 , 340 (2001)] acoustic magnon ("magnetic exciton") Q Q = = (0, 0, 1/2) 0 T c = 1.8 K Cooper pairs formed by heavy electrons ("itinerant" 5f electrons) superconducting glue provided by magnetic excitons in the system of "localized" 5f electrons

  27. Non-Fermi-liquid superconductor UBe 13 [F. Kromer et al., PRL 81 , 4476 (1998); N. Oeschler et al., Acta Phys. Pol. 34 , 255 (2003)] ΔC C vs T α vs T vs T T ( α = l -1 δ l/ δ T) P. Gegenwart et al. (2004) 4T ≤ B ≤ 10 T : ρ / ρ (1K) vs T universal T  0 : Δρ ~ T 1.5 T L  0 at B* ≈ 4.2 T: QCP (3D-SDW) Δ C/T = γ 0 - β T 0.5 (B = 12 T)

  28. Double transition in (U 1-x Th x )Be 13 0.019 < x < 0.046 [H.R. Ott et al., Phys. Rev. B 31 , 1651 (1985)]

  29. Phase diagram of U 1-x Th x Be 13 [F. Kromer et al., PRB 62 , 12477 (2000); JLTP 126 , 815 (2002)] α vs T

  30. Kondo problem to heavy fermions and local quantum criticality (Experiment II): Interplay of incipient magnetism and superconductivity in heavy-fermion metals

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend