transport and optical properties of heavy fermions
play

Transport and optical properties of heavy fermions Theo Costi - PowerPoint PPT Presentation

Transport and optical properties of heavy fermions Theo Costi Institute for Solid State Research, Research Centre J ulich, Germany October 5, 2005 What are the low energy scales in (paramagnetic) heavy fermions ? How are these


  1. Transport and optical properties of heavy fermions Theo Costi Institute for Solid State Research, Research Centre J¨ ulich, Germany October 5, 2005 • What are the low energy scales in (paramagnetic) heavy fermions ? • How are these manifested in physical properties such as – spectra, – dynamical susceptibilities, – resistivities, – optical conductivities ? • In what sense is there universality and scaling in heavy fermions ? T. A. C., N. Manini, JLTP 2002 & unpublished

  2. Motivation:single Kondo impurity � ǫ k c † H = k ,σ c k ,σ + J S 0 · s 0 k ,σ • One low energy scale: – T K = f ( J/D ) – Fermi liquid scale T 0 = T K • universal scaling functions: – ρ ( T, J/D ) ⇒ f ρ ( T/T K ) – A ( ω, T, J/D ) ⇒ f A ( ω/T K , T/T K ) 1 0.8 T 0 : χ (0)=1/4T 0 0.6 ρ (T) 0.4 0.2 0 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 T/T 0

  3. Motivation:experiments, e.g. Andres et al 1975 • Fermi liquid coherence scale T 0 ≈ 3 K . • T max = 35 K ≈ 10 T 0 . However, T max � = T K ! • In fact T K generally absent in ρ ( T ) , σ ( ω, T ) .

  4. Kondo Lattice Model � ǫ k c † � H = k ,σ c k ,σ + J S j · s j k ,σ j Solve for paramagnetic solutions by DMFT(NRG) on a Bethe-Lattice : 2 � D 2 − ε k 2 N 0 ( ε k ) = πD 2 Consider c-electron fillings 0 < n c < 1 (hole dopings 0 ≤ δ ≤ 1 ). Calculate : • Σ σ ( ω, T ) , c-electron self-energy • ρ c ( ω, T ) , c-electron DOS • A ( ω, T ) , f-electron DOS • χ ( ω, T ) , dynamical susceptibility • σ ( ω, T ) , optical conductivity • ρ ( T ) , resistivity

  5. Low energy scales in χ ( ω, T ) 40 n c =0.6 ( δ =40%) T 0 n c =0.65 ( δ =35%) J=0.4 n c =0.7 ( δ =30%) n c =0.75 ( δ =25%) 30 n c =0.8 ( δ =20%) Im[ χ ’’( ω ,T=0)] n c =0.85 ( δ =15%) n c =0.9 ( δ =10%) 20 n c =0.95 ( δ =5%) n c =0.98 ( δ =2%) n c =0.991 ( δ =0.9%) T * 10 n c =0.995( δ =0.5%) 0 10 -4 10 -3 10 -2 10 -1 10 0 10 1 ω /D • Fermi lquid scale T 0 , discernible in χ for all δ > 0 . • Single-ion Kondo scale T ∗ = T K , descernible in χ for δ < 20%

  6. Low energy scales in spectra 0.6 n c =0.8 n c =0.4 0.6 * T 0.4 ρ c T/T 0 =10.23 ρ c 0.4 T/T 0 =4.53 * T/T 0 =12.82 T T/T 0 =2.08 T/T 0 =5.71 A T/T 0 =0.93 T/T 0 =2.55 0.2 0.2 A T/T 0 =0.41 T/T 0 =1.14 T/T 0 =0.18 T/T 0 =0.51 T/T 0 =0.22 0 0 0 50 −50 0 50 100 ω /T 0 ω /T 0 • T ∗ = T K discernible in f-electron spectrum A ( ω ) only for δ < 20% • T ∗ = T K allways discernible in c-electron spectrum ρ c ( ω ) . Suggests tunneling measurement to obtain T ∗ = T K from local c-electron DOS. • T 0 sets T-dependence of A ( ω = 0 , T ) , ρ c ( ω = 0 , T ) . • T 0 /T K → 0 , n c → 0 (Pruschke et al. Anderson Lattice, PRB 1999)

  7. Comparison of Spectra with Photoemission T 0 =30 K T 0 =400 K YbInCu 4 Intensity [arb.units] YbInCu 4 T=12 K Intensity [arb. units] T= 50K T= 90K T=130K photoemission (Moore et al. ) T=150K Kondo lattice −0.2 −0.1 0 0.1 −0.2 −0.1 0 0.1 E [eV] E [eV] • YbInCu 4 : volume collapse at T v = 42 K. High T 0 = 400 K phase for T < T v . Low T 0 = 30 K phase for T > T v . Kondo system with 14 − n f = 0 . 85 − 0 . 96 . • Single crystals, ∆ E = 25 meV FWHM resolution • Lineshape and T-dependent intensity consistent with KL scenario.

  8. Optical conductivity: Kondo insulator n c =1.0 ( δ =0%) 8.0 5.4 ∆ dir 6.0 + E k σ ( ω ,T) 2.5 4.0 ∆ dir ∆ ind = ∆ g 1.1 2.0 ∆ ind 0.49 µ 0.20 0.08 0.0 -2 -1 0 1 2 10 10 10 10 10 - ω / ∆ g E k • No Drude peak as T → 0 . • T = 0 threshold set by indirect gap ∆ ind = ∆ g = T K (see Logan’s talk). • T-dependence set by T ∗ = T K = ∆ ind • mid-infrared peak; transitions across quasiparticle bands

  9. Optical conductivity: δ > 0 n c = 0.95, ( δ =5%), ∆ dir /T 0 = 110 n c = 0.5 ( δ =50%), ∆ dir /T 0 = 765 ∆ dir ∆ dir 0.3 4.0 4.0 T/T 0 = 21.5 0.2 3.0 3.0 σ ( ω ,T) T/T 0 = 36.9 σ ( ω ,T) 9.5 0.7 2.0 2.0 1.5 0.6 16.5 4.2 7.4 1.0 1.0 1.2 1.8 3.3 0.0 0.0 -1 0 1 2 3 4 -1 0 1 2 3 10 10 10 10 10 10 10 10 10 10 10 ω /T 0 ω /T 0 • Drude peak; transitions within E − k . Develops for T < T 0 . • Scale for T-dependence set by T 0 • mid-infrared peak; transitions across quasiparticle bands

  10. Summary of low energy scales; scaling • Two low energy scales (Pruschke et al 1999, Burdin et al 2000, TAC et al 2001): – Fermi liquid coherence scale T 0 = T 0 ( n c ) seen for all δ > 0 in all quantities – single-ion Kondo scale T K = T K ( n c ) present for δ < 20% in χ ( ω, T ) , A ( ω, T ) (and for all δ > 0 in local c-electron DOS) • universal scaling functions for fixed n c and lattice type ( N 0 ( ε k ) ): – χ ( T, J/D ) ⇒ f χ,nc ( T/T 0 ) – ρ ( T, J/D ) ⇒ f ρ,nc ( T/T 0 ) – A ( ω, T, J/D ) ⇒ f A,nc ( ω/T 0 , T/T 0 ) • numerically, scaling found to persist up to at least 100 T 0

  11. Resistivity scaling: Kondo insulator n c =1.0 ( δ =0%) 4 10 3 10 J=0.275 J=0.30 J=0.325 2 J=0.35 10 J=0.375 ρ (T) J=0.40 1 10 ρ (T<< ∆ g )=A exp( ∆ g /T) 0 10 -1 10 -2 -1 0 1 10 10 10 10 T/ ∆ g • Temperature scale: T K = ∆ g = ∆ ind

  12. Resistivity scaling: 5% doped Kondo insulator n c =0.95 ( δ =5%) 3.0 J=0.225 2.0 J=0.25 J=0.275 J=0.375 ρ (T) J=0.3 J=0.4 1.0 0.0 0 20 40 60 80 100 T/T 0 • Scaling w.r.t. T/T 0 up to T ≈ 100 T 0 • Incoherent metal region with linear T resistivity for T ≈ T 0 .

  13. Resistivity scaling: 50% doping: heavy fermion metal n c =0.50 ( δ =50%) 1.0 0.8 J=0.3 J=0.4 0.6 ρ (T) 0.4 0.2 0.0 0 20 40 60 80 100 T/T 0 • Scaling w.r.t. T/T 0 up to T ≈ 100 T 0 • Typical paramagnetic heavy fermion metal , e.g. CeAl 3 • T max ≈ 5 − 10 T 0 ≪ T K is not a low energy scale. It is temperature at which lattice Kondo resonance vanishes on increasing T (cf. Hubbard model)

  14. Related work: DMFT(NRG): transport crossovers in organic conductors 80 0.3 300 bar W=3543 K 1.1 0.9 1.0 600 bar W=3657 K U=4000 K 0.8 c c P (T) P (T) 70 1 2 700 bar W=3691 K 0.4 * ρ(Τ) T 1500 bar W=3943 K Met max * (d σ /dP) 10 kbar W= 5000 K T Semiconductor 60 0.7 Ins max 0.2 Bad metal ρ (T) 50 ρ ( Ω .cm) T (K) 0.2 40 Mott U/W=0.6 insulator 0.1 30 20 Fermi liquid A.F 0 insulator 0 0.0005 0.001 0.0015 10 0.0 0 100 200 300 400 500 600 700 800 2 /W 2 T 0 50 100 150 200 250 300 P (bar) T (K) Experiments: Limelette et al. cond-mat/0301478. Theory: A. Georges, S. Florens, T.A.C. cond-mat/0301478. DMFT(NRG) results, T.A.C. cond-mat/0301478 & upublished. • Low energy Fermi liquid scale T 0 = zD (HWHM of QP peak) • ρ ( T ) ∼ A T 2 , A ∼ 1 / ( T 0 ) 2 for T ≪ T 0 = zD • Collapse of QP peak on scale T ∼ T 0 , loss of FL coherence • Large ρ for U > W and T > T 0 (scattering from local moments) • Small ρ for U ≪ W and T > T 0 (no local moments)

  15. Interpretation • Far from Kondo insulating state, three temperature ranges: – T ≫ T K ≫ T 0 : single-ion Kondo behaviour – T 0 ≪ T ≤ T K : lattice coherence sets in, T K relevant scale; protracted or two-stage screening of moments (Jarrell) ? – T ≪ T 0 : Fermi liquid coherence sets in (lattice Kondo scale) • For fixed n c , scaling of ρ ( T ) w.r.t. T/T 0 up to T ≈ 100 T 0

  16. Conclusions and open questions 1. DMFT(NRG): allows calculation of photoemission spectra, optical conductivities, resistivities (thermodynamics ?) 2. Spectra of Kondo Lattice show two low energy scales T 0 and T ∗ = T K 3. No clear signature of T K in most quantities. 4. Clear signature of T 0 in all quantities ( e.g. ρ ( T ) ). 5. common features in ρ ( T ) for Kondo Lattice and U ∼ W Hubbard models stems from similar physics: incoherent scattering from “local” moments at T ≫ T 0 and Fermi liquid coherence resulting from formation of singlets (Kondo effect) at T ≪ T 0 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend