inverse chirp signals from stellar core collapse in
play

Inverse chirp signals from stellar core collapse in massive scalar - PowerPoint PPT Presentation

Inverse chirp signals from stellar core collapse in massive scalar tensor gravity Ulrich Sperhake C Moore, M Agathos, R Rosca, D Gerosa, C Ott DAMTP, University of Cambridge arXiv: 1708.03651 [gr-qc], 1903.09704 [gr-qc] STAG Research Centre


  1. Inverse chirp signals from stellar core collapse in massive scalar tensor gravity Ulrich Sperhake C Moore, M Agathos, R Rosca, D Gerosa, C Ott DAMTP, University of Cambridge arXiv: 1708.03651 [gr-qc], 1903.09704 [gr-qc] STAG Research Centre Gravity Seminar University of Southampton , 12 Dec 2019 This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk ł odowska-Curie grant agreement No 690904, from H2020-ERC-2014-CoG Grant No. ”MaGRaTh" 646597, from NSF XSEDE Grant No. PHY-090003 and from STFC Consolidator Grant No. ST/L000636/1. 1

  2. Overview Introduction and motivation Theoretical framework Massive scalar-tensor gravity Massive self interacting scalar-tensor gravity Observation strategies Conclusions

  3. 1. Introduction and motivation

  4. Do we need a theory beyond GR? When asked what he would do if Eddington’s mission failed… But we have reasons to search for “beyond GR” Renormalization: Requires, e.g., higher curvature terms. GR is low-energy limit of more fundamental theory → Dark energy: Why is so small and why Λ ρ dark ∼ ρ mat Dark matter: “Neptune” or “Vulcan” ?

  5. Scalar tensor theory of gravity Scalars appear naturally in extra-dimensional theories Scalars prominent in cosmology ST theory well-posed; fairly well understood mathematically No-hair theorems limit potential of black-hole spacetimes Matter: Neutron stars, core-collapse ⇒ Best example of smoking gun to date: Spontaneous scalarization Damour & Esposito-Farese PRL 1993 Collapse studies in massless case Novak PRD 1998/1999 Novak & Ibanez ApJ 2000, Gerosa+ CQG 2016

  6. Core-collapse scenario to 0th order Massive stars: M ZAMS = 8 . . . 100 M � Core compressed from to ∼ 1 500 km ∼ 15 km ∼ 10 10 g / cm 3 & 10 15 g / cm 3 to Released gravitational energy: O (10 53 ) erg ∼ 10 51 erg in neutrinos, in outgoing shock, explosion ∼ 99 % Explosion mechanism: still uncertainties… Failed explosions lead to BH formation “Collapsar”: possible engine for long-soft GRBs All of this handled for us by Woosley & Heger Phys.Rept. 2007 Initial pre-collapse profile →

  7. 2. Theoretical framework

  8. Theoretical framework Einstein frame: conformal metric g µ ν = F ( ϕ ) g µ ν ¯ Action 1 Z dx 4 √− ¯ g [ ¯ S = R − 2¯ g µ ν ∂ µ ϕ ∂ ν ϕ − 4 V ( ϕ )] + S m [ ψ m , ¯ g µ ν /F ( ϕ )] 16 π Energy momentum tensor: T αβ = ρ hu α u β + Pg αβ s 2 = ¯ g µ ν dx µ dx ν = − F α 2 dt 2 + FX 2 dr 2 + r 2 d Ω 2 Spherical symmetry: d ¯ 1 u α = 1 − v 2 [ α − 1 , vX − 1 , 0 , 0] √ Equations (gravity): ∂ r α = . . . , ∂ r X = . . . ∂ t ∂ t ϕ = . . . Equations (matter): HRSC ( ρ , h, v ) ↔ ( D, S r , τ ) ⇒ GR1D code O’Connor & Ott CQG 2009

  9. Theoretical framework Coupling function Einstein frame: conformal metric F ( ϕ ) g µ ν = F ( ϕ ) g µ ν ¯ Action Potential 1 Z dx 4 √− ¯ g [ ¯ S = R − 2¯ g µ ν ∂ µ ϕ ∂ ν ϕ − 4 V ( ϕ )] + S m [ ψ m , ¯ V ( ϕ ) g µ ν /F ( ϕ )] 16 π Equation of state Energy momentum tensor: T αβ = ρ hu α u β + Pg αβ h P s 2 = ¯ g µ ν dx µ dx ν = − F α 2 dt 2 + FX 2 dr 2 + r 2 d Ω 2 Spherical symmetry: d ¯ 1 u α = 1 − v 2 [ α − 1 , vX − 1 , 0 , 0] √ Equations (gravity): ∂ r α = . . . , ∂ r X = . . . ∂ t ∂ t ϕ = . . . Equations (matter): HRSC ( ρ , h, v ) ↔ ( D, S r , τ ) ⇒ GR1D code O’Connor & Ott CQG 2009

  10. <latexit sha1_base64="LwDNo6hbfsKeU0prb4sSYnKlX0Q=">ACHnicbVBNS8NAEN34bf2qevSyWAXxUJKi6EUQvHhUsCo0tUy2k3ZxNxt2N2I+SVe/CtePCgieNJ/47b24NeDgcd7M8zMi1LBjfX9D29sfGJyanpmtjI3v7C4VF1eOTcq0wybTAmlLyMwKHiCTcutwMtUI8hI4EV0fTwL25QG6SM5un2JbQS3jMGVgndaq7YRyp2Ij7HKTCsiNzQXSUEnsQWf7Iw1sCKUGWVXjbI+xHocqPsVGt+3R+C/iXBiNTICed6lvYVSyTmFgmwJhW4Ke2XYC2nAksK2FmMAV2DT1sOZqARNMuhu+VdNMpXRor7SqxdKh+nyhAGpPLyHVKsH3z2xuI/3mtzMb7YInaWYxYV+L4kxQq+gK9rlGpkVuSPANHe3UtYHl4h1iVZcCMHvl/+S80Y98OvB6U7tcH8UxwxZI+tkiwRkjxySY3JCmoSRO/JAnsizd+89ei/e61frmDeaWSU/4L1/Agvsov4=</latexit> <latexit sha1_base64="LwDNo6hbfsKeU0prb4sSYnKlX0Q=">ACHnicbVBNS8NAEN34bf2qevSyWAXxUJKi6EUQvHhUsCo0tUy2k3ZxNxt2N2I+SVe/CtePCgieNJ/47b24NeDgcd7M8zMi1LBjfX9D29sfGJyanpmtjI3v7C4VF1eOTcq0wybTAmlLyMwKHiCTcutwMtUI8hI4EV0fTwL25QG6SM5un2JbQS3jMGVgndaq7YRyp2Ij7HKTCsiNzQXSUEnsQWf7Iw1sCKUGWVXjbI+xHocqPsVGt+3R+C/iXBiNTICed6lvYVSyTmFgmwJhW4Ke2XYC2nAksK2FmMAV2DT1sOZqARNMuhu+VdNMpXRor7SqxdKh+nyhAGpPLyHVKsH3z2xuI/3mtzMb7YInaWYxYV+L4kxQq+gK9rlGpkVuSPANHe3UtYHl4h1iVZcCMHvl/+S80Y98OvB6U7tcH8UxwxZI+tkiwRkjxySY3JCmoSRO/JAnsizd+89ei/e61frmDeaWSU/4L1/Agvsov4=</latexit> <latexit sha1_base64="LwDNo6hbfsKeU0prb4sSYnKlX0Q=">ACHnicbVBNS8NAEN34bf2qevSyWAXxUJKi6EUQvHhUsCo0tUy2k3ZxNxt2N2I+SVe/CtePCgieNJ/47b24NeDgcd7M8zMi1LBjfX9D29sfGJyanpmtjI3v7C4VF1eOTcq0wybTAmlLyMwKHiCTcutwMtUI8hI4EV0fTwL25QG6SM5un2JbQS3jMGVgndaq7YRyp2Ij7HKTCsiNzQXSUEnsQWf7Iw1sCKUGWVXjbI+xHocqPsVGt+3R+C/iXBiNTICed6lvYVSyTmFgmwJhW4Ke2XYC2nAksK2FmMAV2DT1sOZqARNMuhu+VdNMpXRor7SqxdKh+nyhAGpPLyHVKsH3z2xuI/3mtzMb7YInaWYxYV+L4kxQq+gK9rlGpkVuSPANHe3UtYHl4h1iVZcCMHvl/+S80Y98OvB6U7tcH8UxwxZI+tkiwRkjxySY3JCmoSRO/JAnsizd+89ei/e61frmDeaWSU/4L1/Agvsov4=</latexit> <latexit sha1_base64="LwDNo6hbfsKeU0prb4sSYnKlX0Q=">ACHnicbVBNS8NAEN34bf2qevSyWAXxUJKi6EUQvHhUsCo0tUy2k3ZxNxt2N2I+SVe/CtePCgieNJ/47b24NeDgcd7M8zMi1LBjfX9D29sfGJyanpmtjI3v7C4VF1eOTcq0wybTAmlLyMwKHiCTcutwMtUI8hI4EV0fTwL25QG6SM5un2JbQS3jMGVgndaq7YRyp2Ij7HKTCsiNzQXSUEnsQWf7Iw1sCKUGWVXjbI+xHocqPsVGt+3R+C/iXBiNTICed6lvYVSyTmFgmwJhW4Ke2XYC2nAksK2FmMAV2DT1sOZqARNMuhu+VdNMpXRor7SqxdKh+nyhAGpPLyHVKsH3z2xuI/3mtzMb7YInaWYxYV+L4kxQq+gK9rlGpkVuSPANHe3UtYHl4h1iVZcCMHvl/+S80Y98OvB6U7tcH8UxwxZI+tkiwRkjxySY3JCmoSRO/JAnsizd+89ei/e61frmDeaWSU/4L1/Agvsov4=</latexit> The coupling function and potential Coupling function: F ( ϕ ) = e − 2 α 0 ϕ − β 0 ϕ 2 determine all modifications at 1st PN order α 0 , β 0 Potential for a massive non-interacting scalar field V ( ϕ ) = 1 2 µ 2 ϕ 2 ω ∗ = µc 2 Mass introduces characteristic frequency µ ~ µ = 10 − 14 eV Here typically: ω ∗ = 15 . 2 s − 1 ⇔

  11. Equation of state Pressure: “cold” + “thermal” contribution: P = P c + P th ( K 1 ρ Γ 1 if ρ ≤ ρ nuc Hybrid EOS for cold part: P c = K 2 ρ Γ 2 if ρ > ρ nuc  K 1 Γ 1 − 1 ⇢ Γ 1 − 1 if ⇢ ≤ ⇢ nuc  Internal energy from 1st law: ✏ c = Γ 2 − 1 ⇢ Γ 2 − 1 + E 3 K 2 if ⇢ > ⇢ nuc  Thermal pressure: P th = ( Γ th − 1) ⇢ ( ✏ − ✏ th ) Parameters: Γ 1 = 1 . 3 , Γ 2 = 2 . 5 , Γ th = 1 . 35 K 1 = 4 . 9345 × 10 14 [cgs] , ρ nuc = 2 × 10 14 g cm − 3 from continuity at K 2 , E 3 ρ = ρ nuc

  12. The coupling function and potential Coupling function, potential: V ( ϕ ) = 1 F ( ϕ ) = e − 2 α 0 ϕ − β 0 ϕ 2 2 µ 2 ϕ 2 10 − 2 α 0 10 − 3 PSRJ0348+0432 PSR J1738+0333 Cassini Runs 10 − 4 − 6 − 4 − 2 0 2 4 6 β 0 µ . 10 − 19 eV Only for !! Here: µ [eV] ∈ [10 − 15 , 10 − 12 ] Ramazanoglu & Pretorius PRD 2016 Free parameters: µ, α 0 , β 0 , Γ 1 , Γ 2 , Γ th

  13. Convergence test µ = 10 − 14 eV , α 0 = 10 − 4 , For β 0 = − 20 Γ 1 = 1 . 3 , Γ 2 = 2 . 5 , Γ th = 1 . 35 Using points N 1 = 5000 , N 2 = 10000 , N 3 = 20000 Discretization error: ∼ 5 %

  14. 3. Massive ST gravity

  15. Waveforms ``close to’’ the source µ = 10 − 14 eV , α 0 = 10 − 2 , For β 0 = − 20 Γ 1 = 1 . 3 , Γ 2 = 2 . 5 , Γ th = 1 . 35 0 r ex ϕ [cm] 5 -1 × 10 Fiducial -4 α 0 = 10 0 α 0 = 1 -14 eV 5 µ = 3x10 -2 × 10 5 -1 × 10 Γ 2 = 3 α 0 = 1, β 0 = -10 5 -2 × 10 0.1 0.2 0.3 0.4 0.5 5 -3 × 10 0 1 2 3 t [s] massless case; fairly insensitive to parameters; dispersion! r ϕ �

  16. Waveforms ``far from’’ the source LIGO will observe the above scalar profiles after they propagate to large distances In the massless case this is almost trivial ϕ ( t ; r ) = 1 r ϕ ( t − r ; r extract ) In the massive case things are more complicated: signals propagate with dispersion

  17. Waveforms ``far from’’ the source Far from the source, scalar dynamics are governed by the flat-space Klein-Gordon wave equation ∂ 2 t ϕ � r 2 ϕ + ω 2 ∗ ϕ = 0 Easier to work with the radially rescaled field σ ≡ r ϕ As the signal propagates outwards: The scalar field - Low frequencies are suppressed - High frequency power spectrum is unaffected mass has a natural - Signal spreads out in time frequency ω ∗ = c 2 µ/ ~ - High frequencies arrive earlier than low frequencies - Signal becomes increasingly oscillatory

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend