short gravitational wave signal searches in tama300 data
play

Short gravitational wave signal searches in TAMA300 data : stellar - PowerPoint PPT Presentation

Short gravitational wave signal searches in TAMA300 data : stellar core collapse and black hole Nobuyuki Kanda TAMA collaboration @ TAUP2007, 11th Sep. 2007, Sendai Special Thanks to M.Ando, T.Akutsu, R.Honda and Y.Tsunesada 1-1 Excess Power


  1. Short gravitational wave signal searches in TAMA300 data : stellar core collapse and black hole Nobuyuki Kanda TAMA collaboration @ TAUP2007, 11th Sep. 2007, Sendai Special Thanks to M.Ando, T.Akutsu, R.Honda and Y.Tsunesada

  2. 1-1 Excess Power Filter 1-2 ALF 1-3 TF-Cluster Matched filter TAMA's searches for Short GW 1. Stelar-core collapse (SN) : Burst GW 2. Black-hole quasi-normal mode : Ringdown GW 3. Keyword for short signal searches

  3. Observational runs and data Data Taking period actual data amount remarks DT1 8/6 - 7/1999 ~3 + ~7 hours continuous lock first whole system test DT2 9/17 - 20/1999 31 hours first Physics run DT3 4/20 - 23/2000 13 hours h ~ 5x10-21 [1/ √ Hz] -- 8/14/2000 World best sensitivity DT4 8/21 - 9/3/2000 167 hours stable long run DT5 3/1 - 3/8/2001 111 hours Longest stretch of continuous lock is Test Run 1 6/4 - 6/6/2001 keep running all day 24:50 1038 hours DT6 8/1 - 9/20/2001 full-dressed run duty cycle 86% Recycling, h ~ 3x10-21 [1/ √ Hz], DT7 8/31 - 9/2/2002 24 hours with duty cycle 76.7% Simultaneous obs with LIGO & GEO 1168 hours, coincidence obs with DT8 2/14 – 4/14/2003 duty cycle 81.1% LIGO S2 10/31(Actually 558 hours, partial coincidence run with LIGO S3 DT9 11/28)/2003 (weekday: night time, ‘ crewless ’ operation – 1/5/2003 weekend: full time)

  4. 1. Burst Gravitational Waves from Stellar-core collapse Numerical Simulation Predicts GW Waveform. Komatsu et al. (1989) Zwerger & Müler (1997) Dimmelmeier et.al., (2001,2002) 1.5 A1B1G1 A3B3G1 1 A4B1G2 ] –20 Amplitude [x 10 0.5 0 –0.5 Gravitational waveforms –1 from stellar–core collapse (10kpc from the earth) –1.5 0 10 20 30 40 50 Time [msec]

  5. TAMA300 Sensitivity : Range of Detection for Burst GW from Stellar-Core Collapse 1/2 10 –18 Detector Noise Level [1/Hz TAMA noise level (DT9) GW RSS Amplitude and 10 –20 100pc events 10 –22 10kpc events LCGT design sensitivity 10 –24 10 2 10 3 Frequency [Hz] Figure by M.Ando, GW signals by Dimmelmeier, et al. (2002)

  6. 1-1. Excess Power Filter by M.Ando (Tokyo Univ.)

  7. by M.Ando Phy. Rev. D71, 082002 (2005)

  8. 1-2. ALF (Alternative Linear Filter) by Tomomi Akutsu (ICRR, Tokyo Univ. / Osaka City Univ.),

  9. U.L. for h rss >10 -17 0.55 [events/day] , C.L.90% by Tomomi Akutsu , et al. Class. Quantum Grav. 23 (2006) S715

  10. 1-3 TF (Time-Frequency) - cluster 4 strain amplitude [x 10 -20 ] 2 0 -2 power [x 10 -42 / Hz] power [x 10 -42 / Hz] -4 10 -6 A1B1G1 @ 1kpc 8 -8 6 -10 -10 -5 0 5 10 15 20 25 30 4 time [msec] 2 3000 x 10 -42 3000 2000 0 -10 -5 1000 10 0 2500 5 0 frequency [Hz] 8 10 frequency [Hz] time [msec] 6 2000 4 1500 2 0 1000 power [/Hz] 500 0 -10 -5 0 5 10 15 20 time [msec] by R.Honda (Osaka City Univ.)

  11. Example A4B2G2 type I/II @100pc 100pc Type I 5000 5000 300 300 4000 frequency [Hz] 4000 frequency [Hz] 200 200 3000 100 3000 100 2000 0 1000 2000 0 0 1000 -10 -5 0 5 10 time [msec] @500pc 0 500pc 5000 -15 -10 -5 0 5 10 15 12 4000 frequency [Hz] time [msec] 9 6 3000 3 Spike noise 2000 0 TAMA noise 1000 5000 power 0 4500 12000 -10 -5 0 5 10 10000 4000 time [msec] 8000 @1kpc 3500 frequency [Hz] 1000pc 6000 3000 5000 4000 6 2000 2500 4000 frequency [Hz] 0 4 2000 3000 2 1500 2000 0 1000 1000 500 -8 -6 -4 -2 0 2 4 6 8 0 -10 -5 0 5 10 time [msec] time [msec] by R.Honda (Osaka City Univ.)

  12. Clustering (recognization of connected region) peak hight : P(t 0 ,f 0 ) cluster threshold : P (t 0 ,f 0 ) 1/2 f 0 t 0 cluster characteristics parameters : � t � tP ( t, f ) t1s = t1v = S V � ( t − t1s) 2 � ( t − t1v) 2 P ( t, f ) t2s = t2v = S V � = 1 S � ( t − t1s) 3 � ( t − t1v) 3 P ( t, f ) t3s = t3v = t,f V (t2v) 3 / 2 S (t2s) 3 / 2 � = P ( t, f ) V � ( t − t1v) 4 P ( t, f ) � ( t − t1s) 4 t4v = t4s = t,f V (t2v) 4 / 2 S (t2s) 4 / 2 by R.Honda (Osaka City Univ.)

  13. TF-cluster : Event Selection exclude Gauss noise exclude TAMA noises f1s vs f2s t1s/S vs f1s/S 25 0.4 TAMA SNR>100 gauss noise 0.3 DFM 1pc DFM 10pc 20 DFM 50pc 0.2 DFM 100pc 0.1 15 f1s/S t2s 0.0 10 -0.1 TAMA SNR>100 -0.2 gauss noise 5 DFM 1pc DFM 10pc -0.3 DFM 50pc DFM 100pc 0 -0.4 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 t1s t1s/S -2.0 ≤ f1s ≤ 2.0 S ≥ 4 -1.5 ≤ t1v ≤ 1.5 f2s ≤ 5.0 F ≤ 4 t2v ≤ 3.0 f4v ≤ 6.0 (1250Hz) (t1s 2 +f1s 2 ) 1/2 /S ≤ 0.15 t2v 1/2 /S ≥ 0.04 by R.Honda (Osaka City Univ.)

  14. Efficiency and Selected Events efficiency = 86 % within 10pc (SNR > 70) N = 152 event for 1.26 x 10 5 sec data Rate = N / (T x efficiency) = 1.4 x 10 -3 events/sec = 4.9 events/hour by R.Honda (Osaka City Univ.), Master Thesis, Feb. 2007

  15. Echeverria (1989) central frequency Quality factor 2. Ringdown GW from black-hole quasi-normal mode inspiral-merger Ringdown Binary, BH formation Kerr BH SN expl. QNMs core collapse perturbed BH Waveform: Damped sinusoid (Quasi-normal modes) h ( t ) = exp( − πf c t/Q ) sin(2 πf c t ) f c = 3 . 2 × 10 4 [Hz] 1 − (1 − a ) 0 . 3 � � M/M � M: Mass Q = 2 . 0(1 − a ) − 0 . 45 a: Spin * Probe for BH direct observation * BH physics in inspiral-merger, core collapses, ... * Good SNR expected, ~ 100@10kpc (TAMA sensitivity) by Y.Tsunesada (NAO, Tokyo Institute of Technology)

  16. Matched Filter Design for BH Ringdown � s ( f ) h ∗ ( f ; f c , Q ) s(f): signal + noise ρ = d f h(f): template S n ( f ) Sn(f): Weight (noise power) Template construction in (fc, Q) plane (Nakano, Takahashi, Tagoshi, Sasaki, PRD 2003) 35 fc = 100 ~ 2500 [Hz] 30 Q (a = 0 ~ 0.998) Q = 2 ~ 33.3 25 20 682 templates (SNR loss < 2%) Q 15 10 CPU Time � N tmplt � T 1 50s = 130 [sec] 5 682 Intel PenIV 2.5GHz 0 � N tmplt � � � 16 400 450 500 550 600 T 1000h = 6 . 5 [days] f c 682 f c [Hz] N CPU by Y.Tsunesada

  17. Trigger Rate of the Ringdown Search R ( f c ) = N trg ( f c ) 1 1 � ( f c ) 1 − (false dismissal) T obs 100 Preliminary DT6 diff f c > 1500Hz: DT6 cum (M < 20M solar ) DT8 diff 10 DT8 cum Rate [H -1 ] (SNR > 20) DT9 diff DT6: DT9 cum R < 4 . 6 [H − 1 ] 1 DT8: R < 1 . 8 × 10 − 1 [H − 1 ] 0.1 DT9: R < 3 . 4 × 10 − 2 [H − 1 ] 0.01 (SNR > 20) 500 1000 1500 2000 2500 Trigger Rate (DT9) < 1ev/day Ringdown Frequency [Hz] by Y.Tsunesada

  18. Q = Kerr parameter fc = Mass of BH BH Mass Spectroscopy ... Ringdown GW detection can measure; % % % % Tsunesada, Kanda et al. Phys.Rev.D 71, 103005 (2005)

  19. Burst : only numerical predicted, power filter Ringdown : anlytical prediction, matched filter Spike, Glitch, Steps... Non-Gaussianity Instabilit Short GW search requires ‘silent detector’. 3. Keyword for short signal searches Different types of ‘waveforms’ and search methods Even so, there are same noise sources !

  20. Burst GW Excess power filter, ALF, TF cluster BH ringdown GW Matched Filter Summary TAMA searched for short GW signals, and derive upper limits: The data analysis evaluated a kind of TAMA detector noise characteristics.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend