mu differentiability of an internal function ricardo
play

mu-differentiability of an internal function Ricardo Almeida and V - PowerPoint PPT Presentation

mu-differentiability of an internal function Ricardo Almeida and V tor Neves University of Aveiro, Portugal May 2006 Definition [Reeken, 1992] Let E and F be normed spaces, U E open set and f : U F an internal function. f


  1. mu-differentiability of an internal function Ricardo Almeida and V ´ ıtor Neves University of Aveiro, Portugal May 2006

  2. Definition [Reeken, 1992] Let E and F be normed spaces, U ⊆ E open set and f : ∗ U → ∗ F an internal function. f is m-differentiable if 1. for all a ∈ σ U there exist 0 ≈ δ a ∈ ∗ R + and a finite linear operator Df a ∈ ∗ L ( E, F ) such that, for all x ∈ ∗ U , there is some η ≈ 0 with δ a < | x − a | ≈ 0 ⇒ f ( x ) − f ( a ) = Df a ( x − a ) + | x − a | η 2. f ( ns ( ∗ U )) ⊆ ns ( ∗ F ). Theorem [Schlesinger, 1997] If E and F are finite dimensional and f : ∗ K → ∗ F an internal function, with K a compact set, then the following statements are equivalent: 1. f is S-continuous and m-differentiable; 2. There exists a differentiable standard function g : K → F with sup | f ( x ) − g ( x ) | ≈ 0 . x ∈ ∗ K 1

  3. Definition Let E and F be normed spaces, U ⊆ E open set and f : ∗ U → ∗ F an internal function. f is mu-differentiable if 1. for each a ∈ σ U there exists a positive infinitesimal δ a such that, for all x ∈ µ ( a ), there exists a finite linear operator Df x ∈ ∗ L ( E, F ) for which holds ∀ y ∈ µ ( a ) | x − y | > δ a ⇒ f ( x ) − f ( y ) = Df x ( x − y ) + | x − y | η for some η ≈ 0. 2. f ( ns ( ∗ U )) ⊆ ns ( ∗ F ). Theorem Let f : ∗ U → ∗ F be a mu-differentiable function. Then, for all x, y ∈ ns ( ∗ U ) with x ≈ y , we have 1. f ( x ) ≈ f ( y ); 2. if d ∈ ∗ E with | d | = 1, Df x ( d ) ≈ Df y ( d ). 2

  4. Theorem If E and F are finite dimensional and f : ∗ U → ∗ F an internal function, then: 1. If f is mu-differentiable then st ( f ) : U → F is a C 1 function, Dst ( f ) a = stDf a for a ∈ σ U and ∀ a ∈ σ U ∃ η 0 ≈ 0 ∀ x ≈ a | f ( x ) − st ( f )( x ) | ≤ η 0 . 2. If there exists a C 1 standard function g : U → F with ∀ a ∈ σ U ∃ η 0 ≈ 0 ∀ x ≈ a | f ( x ) − g ( x ) | ≤ η 0 , then f is mu-differentiable. The function g = st ( f ). Proof (1) (...) 3

  5. (2) Fix a ∈ σ U and let δ a := √ η 0 . Fix x, y ∈ µ ( a ) with δ a < | x − y | . Since g is of class C 1 then g ( x ) − g ( y ) = Dg x ( x − y ) + | x − y | η for some η ≈ 0. Define ǫ 1 := g ( x ) − f ( x ) and ǫ 2 := g ( y ) − f ( y ). Then f ( x ) − f ( y ) = Dg x ( x − y ) + | x − y | η + ǫ 2 − ǫ 1 and | ǫ 1 − ǫ 2 | | x − y | ≤ | ǫ 1 | + | ǫ 2 | ≤ 2 η 0 ≈ 0 . √ η 0 | x − y | ✷ 4

  6. Corollary If f : U → F is a standard function then f is of class C 1 ⇔ f is mu-differentiable Theorem If f : ∗ U → ∗ F is a mu-differentiable function, then • ∀ a ∈ σ U ∃ δ ≈ 0 ∀ d ∈ ∗ E ∃ L ∈ fin ( ∗ F ) ∀ x ∈ ∗ U � x ≈ a ⇒ f ( x + δd ) − f ( x ) � | d | = 1 ∧ ≈ L . δ • ∀ x ∈ ns ( ∗ U ) ∃ δ x ≈ 0 ∃ Df x ∈ ∗ L ( E, F ) ∀ y ∈ ∗ U ∃ η ≈ 0 | Df x | is finite ∧ [ δ x < | x − y | ≈ 0 ⇒ f ( x ) − f ( y ) = Df x ( x − y ) + | x − y | η ] . • ∀ a ∈ σ U ∃ δ a ≈ 0 ∃ Df a ∈ ∗ L ( E, F ) ∀ x, y ∈ µ ( a ) ∃ η ≈ 0 | Df a | is finite ∧ [ | x − y | > δ a ⇒ f ( x ) − f ( y ) = Df a ( x − y ) + | x − y | η ] . 5

  7. Theorem If E and F are finite dimensional and f : ∗ U → ∗ F an internal function, then: then st ( f ) : U → F is a C k function, 1. If f is k -times mu-differentiable D j st ( f ) a = stD j f a for j = 1 , 2 , . . . , k and a ∈ σ U . Furthermore ∀ j ∈ { 0 , 1 , . . . , k − 1 } ∀ a ∈ σ U ∃ η j ≈ 0 ∀ x ≈ a | D j f x − D j st ( f ) x | ≤ η j . 2. If there exists a C k standard function g : U → F with ∀ j ∈ { 0 , 1 , . . . , k − 1 } ∀ a ∈ σ U ∃ η j ≈ 0 ∀ x ≈ a | D j f x − D j g x | ≤ η j then f is k -times mu-differentiable and g = st ( f ). 6

  8. Taylor’s Theorem. Let E and F be two standard finite dimensional normed ∗ U → ∗ F a function k -times mu- spaces, U a standard open set and f : differentiable, k ∈ σ N . Then, 1. for every x ∈ ns ( ∗ U ), there exists ǫ ≈ 0 such that, whenever y ∈ ∗ U with ǫ < | y − x | ≈ 0, there exists η ≈ 0 satisfying f ( y ) = f ( x )+ Df x ( y − x )+ 1 2! D 2 f x ( y − x ) (2) + ... + 1 k ! D k f x ( y − x ) ( k ) + | y − x | k η. 2. for every x ∈ ns ( ∗ U ), there exists ǫ ≈ 0 such that, whenever y ∈ ∗ U with ǫ < | y − x | ≈ 0, there exists η ≈ 0 satisfying f ( y ) = st ( f )( x ) + Dst ( f ) x ( y − x ) + 1 2! D 2 st ( f ) x ( y − x ) (2) + . . . + 1 k ! D k st ( f ) x ( y − x ) ( k ) + | y − x | k η. 7

  9. Proof (1) Define the sequence ( ǫ i ) i = − 1 ,...,k − 1 by • f ( y ) = st ( f )( y ) + ǫ − 1 , ( ǫ − 1 ≤ η 0 ); • f ( x ) = st ( f )( x ) + ǫ 0 , ( ǫ 0 ≤ η 0 ); • Df x ( y − x ) = Dst ( f ) x ( y − x ) + | y − x | ǫ 1 , ( ǫ 1 ≤ η 1 ); • ... • D k − 1 f x ( y − x ) ( k − 1) = D k − 1 st ( f ) x ( y − x ) ( k − 1) + | y − x | k − 1 ǫ k − 1 , ( ǫ k − 1 ≤ η k − 1 ); Furthermore � y − x � y − x � y − x � y − x � ( k ) � ( k ) � ( k ) � ( k ) D k f x ≈ D k f a ≈ D k st ( f ) a ≈ D k st ( f ) x , | y − x | | y − x | | y − x | | y − x | so there exists ǫ k ≈ 0 with D k f x ( y − x ) ( k ) = D k st ( f ) x ( y − x ) ( k ) + | y − x | k ǫ k . 8

  10. 1 1 1 k − 1 } and take y ∈ ∗ U with ǫ < | y − x | ≈ 0. Define ǫ = max { η k +1 0 , η 1 , ..., η 2 k Since st ( f ) is of class C k , then st ( f )( y ) = st ( f )( x )+ Dst ( f ) x ( y − x )+ 1 2! D 2 st ( f ) x ( y − x ) (2) + ... + 1 k ! D k st ( f ) x ( y − x ) ( k ) + | y − x | k η Consequently f ( y ) = f ( x ) + Df x ( y − x ) + 1 2! D 2 f x ( y − x ) (2) + ... + 1 k ! D k f x ( y − x ) ( k ) + | y − x | k η + + ǫ − 1 − ǫ 0 − | y − x | ǫ 1 − | y − x | 2 ǫ 2 − ... − | y − x | k − 1 ǫ k − 1 − | y − x | k ǫ k and | ǫ − 1 | | ǫ 0 | | ǫ 1 | | y − x | k − 2 + . . . + | ǫ k − 1 | | ǫ 2 | | y − x | k + | y − x | k + | y − x | k − 1 + | y − x | ≤ η 0 + η 0 + η 1 + η 2 + ... + η k − 1 ≤ ≈ 0 . k k k − 1 k − 2 1 k +1 k +1 η k k − 1 η 2 η η η 1 k − 1 0 0 2 1 (2) Define ǫ := η k +1 , (...) 0 ✷ 9

  11. Chain Rule. Let g, f be two m-differentiable functions at a and g ( a ), respectively, where a and g ( a ) are two standards. If Dg a is invertible and | ( Dg a ) − 1 | is finite, then f ◦ g is m-differentiable at a and D ( f ◦ g ) a = Df g ( a ) Dg a Proof Take δ := max { δ a , 2 δ g ( a ) | ( Dg a ) − 1 |} and choose x with δ < | x − a | ≈ 0. Then � x − a � � � 0 ≈ | g ( x ) − g ( a ) | = | Dg a ( x − a )+ | x − a | η 1 | > 2 δ g ( a ) | ( Dg a ) − 1 | � � + η 1 � Dg a � > δ g ( a ) � � | x − a | and f ( g ( x )) − f ( g ( a )) = Df g ( a ) ( g ( x ) − g ( a ))+ | g ( x ) − g ( a ) | η 2 = Df g ( a ) Dg a ( x − a )+ | x − a | η for some η ≈ 0. ✷ 10

  12. Let f : ∗ U → ∗ R be a mu-differentiable function Mean Value Theorem. with U open and convex. Then, for all x, y ∈ ns ( ∗ U ) with | x − y | > δ a , where a := st ( x ) ∃ c ∈ [ x, y ] f ( x ) − f ( y ) = Df c ( x − y ) + | x − y | η for some η ≈ 0 . Proof Define an hyper-finite sequence ( x n ) n ∈ I in the following way: Let x 1 = x and fix δ 1 ≈ 0 with, for all z ∈ ∗ U : δ 1 < | z − x 1 | ≈ 0 ⇒ f ( z ) − f ( x 1 ) = Df x 1 ( z − x 1 ) + | z − x 1 | η 1 . y − x | y − x | and fix 0 ≈ δ 2 > δ 1 with, for all z ∈ ∗ U : Let x 2 = x 1 + 2 δ 1 δ 2 < | z − x 2 | ≈ 0 ⇒ f ( z ) − f ( x 2 ) = Df x 2 ( z − x 2 ) + | z − x 2 | η 2 y − x and take x 3 = x 2 + 2 δ 2 | y − x | . 11

  13. Repeating the process, we obtain a sequence { x n | 1 ≤ n ≤ N + 1 } which satisfies the conditions • x 1 = x ; • x n +1 = x n + 2 δ n y − x | y − x | , δ n ≈ 0 and δ n > δ 1 , n = 1 , . . . , N ; • f ( x n +1 ) − f ( x n ) = Df x n ( x n +1 − x n ) + | x n +1 − x n | η n , for some η n ≈ 0, n = 1 , . . . , N ; • x N +1 = y (if not, choose 0 ≈ δ > δ N with x N + 2 δ y − x | y − x | = y ). Then N N N � � � f ( x ) − f ( y ) = ( f ( x n ) − f ( x n +1 )) = Df x n ( x n − x n +1 ) + | x n − x n +1 | η n n =1 n =1 n =1 and � � �� N n =1 | x n − x n +1 | η n � � � ≈ 0 . | x − y | 12

  14. We will prove now that there exists c ∈ [ x, y ] such that � x − y � N � n =1 Df x n ( x n − x n +1 ) Df c ≈ . | x − y | | x − y | x − y Letting d := | x − y | , it is true that � N � N � N n =1 Df x n ( x n − x n +1 ) n =1 Df x n ( x n − x n +1 ) n =1 2 δ n Df x n ( d ) = = . � N � N | x − y | n =1 | x n − x n +1 | n =1 2 δ n Choosing m, M ∈ { x 1 , ..., x N } with Df m ( d ) = min 1 ≤ n ≤ N Df x n ( d ) & Df M ( d ) = max 1 ≤ n ≤ N Df x n ( d ) , we get � N n =1 2 δ n Df x n ( d ) Df m ( d ) ≤ ≤ Df M ( d ) . � N n =1 2 δ n So, there exists c ∈ [ m, M ] ⊆ [ x, y ] with � N n =1 2 δ n Df x n ( d ) Df c ( d ) ≈ . ✷ � N n =1 2 δ n 13

  15. Norm Mean Value Theorem Let f : ∗ U → ∗ F be a mu-differentiable function with U open and convex. Then, for all x, y ∈ ns ( ∗ U ) with | x − y | > δ a , where a := st ( x ) ∃ c ∈ [ x, y ] | f ( x ) − f ( y ) | ≤ | Df c ( x − y ) | + | x − y | η for some η ≈ 0. 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend