introduction to magnetism part i moments
play

Introduction to magnetism Part I - Moments Olivier Fruchart - PowerPoint PPT Presentation

Introduction to magnetism Part I - Moments Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/


  1. Introduction to magnetism Part I - Moments Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  2. INTRODUCTION TO MAGNETISM – Currents, magnetic fields and magnetization Oersted field Magnetic dipole Magnetic material μ µ = 0 B π 3 µ 4 r I = B 0   3 π 2 r × − ( μ.r ) r μ   2  r  Magnetization: A.m -1 Magnetic dipole: A.m 2 Magnetic moment: A.m 2 Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.2 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  3. INTRODUCTION – Hysteresis and magnetic materials Manipulation of magnetic materials:  Application of a magnetic field S pontaneous ≠ S aturation = − µ E H.M Zeeman energy: Z 0 s Spontaneous magnetization M s Remanent magnetization M r Another notation M M J s = 0 M s Coercive field H c Hext Hext Losses ∫ = µ E H d M 0 ext Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.3 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  4. → Introduction to magnetism – Moments ToC 1. Magnetic moments 2. Magnetism of single atoms 3. Moments in fields 4. Magnetic ordering 5. Magnetism in metals 6. Magnetic anisotropy Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.4 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  5. Fundamental references Repository of lectures of the European School on Magnetism: http://esm.neel.cnrs.fr Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.5 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  6. 1. MAGNETIC MOMENTS – Angular momentum Classical physics Quantum mechanics Heisenberg uncertainty principle: General definition − 34 J.s h = 6.626 × 10  r .  p ≥ℏ/ 2 − 3 4 J.s ℓ = ∭  r  . r × v  r  . d r ℏ= h / 2 = 1.0546 × 10 is a natural measure for angular ℏ momenta. Niels Bohr's postulate, Electron orbiting around a quantization of angular momentum charged nucleus ∣ r × p ∣ ∈ ℏ ℤ Figures 2 / 4  0 r 2 = m e v 2 / r Newton's law: Ze Quantized l : ℓ = m e r v = l ℏ 2 with Bohr radius a 0 = 4  0 ℏ 2 a 0 / Z r = n 2 m e e a 0 = 0.529 ˚ A ℓ = r × p ℓ = m e r v =ℏ/ m e a 0 c ≈ 1 / 137.04 (fine structure cte) − 31 kg Electrons are largely not relativistic m e = 9.109 × 10 Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.6 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  7. 1. MAGNETIC MOMENTS – Orbital magnetic moment Classical physics Quantum mechanics ∣ ℓ ∣= l ℏ with l ∈ ℤ General definition l is an orbital magnetic quantum = 1 2 ∭ r × j  r  d r number. Electron orbiting around  B =ℏ=− e ℏ a charged nucleus 2 m e is Bohr magneton, the quantum for magnetic moments = I S Charge − e  z = m ℓ  B = m ℓ  2 m e  ℏ − e 2 I Mass m e  =  r 2 − ev / 2  r  =  r m ℓ ∈[− l ; l ] − 19 C e = 1.6 × 10 = − erv / 2 = ℓ Figures with  : gyromagnetic ratio =− e − 24 A.m 2  B = 9.274 × 10 for orbital motion of electrons 2 m e Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.7 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  8. 1. MAGNETIC MOMENTS – Spin magnetic moment Overview Spin angular momentum Landé factor g is a dimensionless Spin = intrinsic quantized angular momentum = g ∣ ℓ ∣ =− eg version of : ∣∣  or 2 m e  B ℏ Electrons are fermions (half-integer spin) s =± 1 =− e with spin quantum number g = 1 Orbital moment: 2 2 m e ≈− e s ℏ=±ℏ g ≈ 2 Electron spin: Angular momentum m e 2 Figures 28 atoms / m 3 n ≈ 8.4 × 10 With (for Fe) Spin magnetic moment 5 A / m n  B ≈ 7.8 × 10 − 15 m Electron radius r e ≈ 2.818 × 10 6 A / m ∣ ℓ ∣= r.p =ℏ/ 2 Measured: M s,Fe ≈ 1.73 × 10 Relativistic, Dirac equation  e =  2m e  m s − 1 ≈ 2.2  B atom ( Z =26) − eg m s =± 1 with 2 Few electrons involved in ferromagn. and g = 2.0023 ≈ 2 Landé factor ∣∣≈ e / m Electrons carry a spin magnetic moment Nucleon spin moment is weak ≈ B and will be neglected here Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.8 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  9. 1. MAGNETIC MOMENTS – Spin-orbit coupling Semi-classical picture Figures The nucleaus is orbiting in the sitting Spin-orbit is larger for heavy framework of the electron, inducing elements Current of the Reminder: 'orbiting' nucleus' − 7 S.I.  0 = 4 × 10 B so = 0 I n I n = Zev / r − 24 A.m 2  B = 9.274 × 10 m e r v ~ n ℏ 2 r a 0 = 0.529 ˚ A 2 For the spin of one electron:  0  B 4 ~4.2 K / Z 2 Z 3 4 4  a 0  so =− B B so ~ 0  B 4 3 ~0.36 meV / Z 4  a 0  Screening and details of electrons in atoms are required  In the range 10-1000meV for magnetic elements Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.9 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  10. → Introduction to magnetism – Moments ToC 1. Magnetic moments 2. Magnetism of single atoms 3. Moments in fields 4. Magnetic ordering 5. Magnetism in metals 6. Magnetic anisotropy Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.10 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  11. 2. MAGNETISM IN ATOMS – Shells and quantum numbers Framework Charged nucleus + Z electrons N-body problem → untractable Seek one electron solutions + perturbation theory (→ Hund's rules etc.) 2 2 H =− ℏ Ze 2 − Schrödinger equation H  i = i  i with hamitonian ∇ 2 m e 4  0 r  r ,  , = R  r  Seek solutions: Elecrtonic orbitals ℓ  r  # of m ℓ  , = P ℓ m ℓ  e i m ℓ  R n and Y ℓ with: states n ∈ ℕ Principal quantum number → Sets the main energy levels l n − 1 Secondary quantum number → Orbital moment m ℓ 2 l  1 Magnetic quantum number → z component of orbital moment m s 2 Spin quantum number Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.11 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  12. 2. MAGNETISM IN ATOMS – Filling shells Labeling the levels Series Usage  K (n=1), L (n=2), M (n=3), N (n=4) etc. Spectroscopy  s ( l =0), p ( l =1), d ( l =2), f ( l =3), g ( l =4) etc. Chemical-physical properties n and l filling (Hartree-Fock) Examples # orbitals 2 6 10 14 18 l =0 l =1 l =2 l =3 l =4 Fe, Z=26 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 1s K n=1 1s 2 2 6 2 6 2 6 L n=2 2s 2p Ion Fe2+ 2 2s 2 2p 6 3s 2 3p 6 4s 0 3d 6 3  1s M n=3 3s 3p 3d N n=4 4s 4p 4d 4f Ion Fe3+ 2 2s 2 2p 6 3s 2 3p 6 4s 0 3d 5 3  1s O n=5 5s 5p 5d 5f 5g Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.12 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  13. 2. MAGNETISM IN ATOMS – Momenta and Hund's rules Combination of momenta and moments Angular and spin momenta from all electrons add up: 2 = S  S  1  S L = ∑ ℓ i L = ∑ ℓ i S = ∑ s i J = L  S 2 = L  L  1  and L 2 = J  J  1  J Resulting magnetic moment: Landé factor µ = − B /ℏ L  2 S  g = 3 2 [ S  S  1 − L  L  1 ]/ 2J  J  1  = g − B /ℏ J Only partly filled shells may display angular momentum and magnetic moment. Hund's rules Or: empirical rules for populating the last partly filled shell Rule Arises from... 1. Maximize S Coulomb interaction and Pauli principle 2. Maximize L consistent with S Coulomb; electrons orbiting same sense 3. J=|L-S| for less than half-filled shells Spin-orbit coupling J=L+S for more than half-filled shells M J ∈[− J , J ] Olivier Fruchart – School of GdR nanoalloys – Fréjus, June 2010 – p.13 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend