exchange and ordering
play

Exchange and ordering Stephen Blundell University of Oxford 2015 - PDF document

25/08/2015 Books Magnetism in Condensed Matter, S.J. Blundell, OUP (2001) Magnetism and Magnetic Materials, J.M.D. Coey, CUP (2009) Basic aspects of the quantum theory of magnetism, D.I. Khomskii, CUP(2010) Magnetism: A Very Short


  1. 25/08/2015 ¡ Books Magnetism in Condensed Matter, S.J. Blundell, OUP (2001) Magnetism and Magnetic Materials, J.M.D. Coey, CUP (2009) Basic aspects of the quantum theory of magnetism, D.I. Khomskii, CUP(2010) Magnetism: A Very Short Introduction, S. J. Blundell, OUP (2012) Exchange and ordering Stephen Blundell University of Oxford ¡ 2015 European School of magnetism Cluj, August 2015 Magnetism in Condensed Matter, Magnetism: VSI Quantum Field Theory for the S.J. Blundell, S.J. Blundell, Gifted Amateur Part 1 36 Euros from amazon.de 8 Euros T. Lancaster and S.J. Blundell, 44 Euros 1 Outline ¡ Outline ¡ Exchange Exchange 1. Direct exchange 1. Direct exchange 2. Indirect exchange 2. Indirect exchange 3. Superexchange 3. Superexchange 3 4 Magnetism is fully quantum mechanical H = − 2 J S 1 · S 2 Magnetism is fully relativistic Magnetism is fully relativistic E = � ⇥ ⇤ E = � ⇥ ⇤ A A ⇤ ⇥ t � ⇤ B = ⇤ ⇤ ⇤ ⇥ ⇤ ⇤ ⇥ t � ⇤ B = ⇤ ⇤ ⇤ ⇥ ⇤ ⇤ � A ⇤ � A     − E x /c − E y /c − E z /c − E x /c − E y /c − E z /c 0 0 E x /c − B z B y E x /c − B z B y 0 0 F µ ν = F µ ν =         E y /c B z − B x E y /c B z − B x 0 0     E z /c − B y B x 0 E z /c − B y B x 0 5 6 1 ¡

  2. 25/08/2015 ¡ Magnetism is fully quantum mechanical S = 1 2 σ Louis ¡Néel ¡ (1904-­‑2000) ¡ Magnetism is fully relativistic E = � ⇥ ⇤ A ⇤ ⇥ t � ⇤ B = ⇤ ⇤ ⇤ ⇥ ⇤ ⇤ � A   − E x /c − E y /c − E z /c 0 E x /c − B z B y 0 F µ ν =     E y /c B z 0 − B x   E z /c − B y B x 0 7 8 Energy terms: ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓ � 2 π 2 ↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑ • Kinetic energy eV L 2 = 2 m ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓ antiferromagnet ↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑ e 2 ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓ • Coulomb energy eV 4 ⇥� 0 L = ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ • Size of atom given by balance of these two terms ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ferromagnet ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ • Spin-orbit ~ meV • Magnetocrystalline anisotropy ~ µ eV ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ 9 10 11 12 2 ¡

  3. 25/08/2015 ¡ Why ¡do ¡you ¡get ¡H 2 ¡and ¡not ¡He 2 ? ¡ Eigenfunc<ons: ¡ ¡ ¡ σ ¡= ¡(| ψ A > ¡+ ¡| ψ B >)/√2 ¡ ¡ ¡(Symmetric, ¡bonding) ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ σ * ¡= ¡(| ψ A > ¡-­‑ ¡| ψ B >)/√2 ¡ ¡ ¡(An<symmetric, ¡an<bonding) ¡ 13 14 Two-electron model 15 Two-electron model Bethe-Slater curve 3 ¡

  4. 25/08/2015 ¡ Consider 2 electrons: their spins can combine to form either an antisymmetric • Interaction between pair of spins motivates the singlet state χ S ( S = 0) or a symmetric triplet state χ T ( S = 1). The wave general form of the Heisenberg model: function, which is a product of spatial and spin terms, must be antisymmetric overall. Hence: Ψ S = [ ψ 1 ( r 1 ) ψ 2 ( r 2 ) + ψ 1 ( r 2 ) ψ 2 ( r 1 )] χ S H = − � ij J ij S i · S j = [ ψ 1 ( r 1 ) ψ 2 ( r 2 ) − ψ 1 ( r 2 ) ψ 2 ( r 1 )] χ T Ψ T The energies of the two possible states are � S ˆ E S = Ψ ∗ H Ψ S d r 1 d r 2 • The quantity gives the exchange energy J ij between two spins. Be very careful on the factor � T ˆ E T = Ψ ∗ H Ψ T d r 1 d r 2 of two between different conventions of the definition of J . so that the di ff erence between the two energies is � 2 ( r 2 ) ˆ E S − E T = 4 ψ ∗ 1 ( r 1 ) ψ ∗ H ψ 1 ( r 2 ) ψ 2 ( r 1 ) d r 1 d r 2 . The energy is then E = 1 4 ( E S + 3 E T ) − ( E S − E T ) S 1 · S 2 . The spin-dependent term can be written H spin = − J S 1 · S 2 . 19 20 • Interaction between pair of spins motivates the general form of the Heisenberg model: H = − � ij J ij S i · S j • Direct exchange : important in many metals such as Fe, Co and Ni • Indirect exchange : mediated through the conduction electrons (RKKY) • Superexchange : exchange interaction mediated by oxygen. This leads to a very long exchange path. Important in many magnetic oxides, e.g. MnO, La 2 CuO 4 . 21 22 Magnetism and metals Outline ¡ Exchange 1. Direct exchange 2. Indirect exchange 3. Superexchange 23 24 4 ¡

  5. 25/08/2015 ¡ 25 26 27 28 29 5 ¡

  6. 25/08/2015 ¡ 31 32 Spin-­‑density ¡wave ¡ 1D ¡electron ¡gas ¡unstable ¡to ¡SDW ¡forma<on ¡ 33 34 TMTSF ¡salts TMTSF ¡salts Very ¡rich ¡ phase ¡diagram Stacks ¡of ¡TMTSF ¡molecules ¡ ⇒ ¡ ¡1D ¡chains ¡ 35 36 6 ¡

  7. 25/08/2015 ¡ 1 d 3 q χ q e i q · r = 2 k F χ p � χ ( r ) = F (2 k F r ) (2 π ) 3 π F ( x ) = − x cos x + sin x x 4 37 38 GMR = giant magnetoresistance (a) S. ¡S. ¡P. ¡Parkin ¡and ¡D. ¡Mauri, ¡Phys. ¡Rev. ¡B ¡ 44, ¡ 7131 ¡(1991) ¡ 39 40 GMR = giant magnetoresistance (b) 41 42 7 ¡

  8. 25/08/2015 ¡ • Interaction between pair of spins motivates the Outline ¡ general form of the Heisenberg model: H = − � ij J ij S i · S j Exchange 1. Direct exchange • Direct exchange : important in many metals such as Fe, Co and Ni • Indirect exchange : mediated through the 2. Indirect exchange conduction electrons (RKKY) • Superexchange : exchange interaction mediated 3. Superexchange by oxygen. This leads to a very long exchange path. Important in many magnetic oxides, e.g. MnO, La 2 CuO 4 . 43 44 Superexchange Toy model for superexchange • Case I: AF ordering • Case II: F ordering • KE advantage for AF ordering 45 46 Toy model for superexchange Toy model for superexchange J ≈ 2 t 2 U 47 48 8 ¡

  9. 25/08/2015 ¡ Toy model for superexchange J ≈ 2 t 2 U K. A. Müller J. G. Bednorz 49 In the next lecture: • magnetic order • frustration and triangles 52 9 ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend