institut f r kernphysik frankfurt for the cbm mvd
play

Institut fr Kernphysik Frankfurt for the CBM-MVD-collaboration - PowerPoint PPT Presentation

AD vanced MO nolithic S ensors for An X-ray fluorescence spectrometer using CMOS-sensors Dennis Doering, Michael Deveaux Institut fr Kernphysik Frankfurt for the CBM-MVD-collaboration Sensor development: IPHC Strasbourg 1) Real-time water


  1. AD vanced MO nolithic S ensors for An X-ray fluorescence spectrometer using CMOS-sensors Dennis Doering, Michael Deveaux Institut für Kernphysik Frankfurt for the CBM-MVD-collaboration Sensor development: IPHC Strasbourg 1) Real-time water analysis using XRF 2) CMOS-Sensors 3) Reconstruction of the energy information 4) Improving the quantum efficiency 1 Supported by BMBF (06FY9099I and 06FY7113I), HIC for FAIR, GSI and EU-FP7

  2. Application: X-ray spectrometer Monitoring water quality and trigger on traces of pollution Sample Identifing elements via their characteristic X-ray-fluorescence lines (XRF) Required sensor features: - Good energy resolution - Low noise - High-rate capability - Low production costs ⇒ Adapted CMOS-sensors M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 2 /25 /17

  3. Operation principle of CMOS-sensors SiO 2 SiO 2 SiO 2 N+ P-Well N+ P+ Diode e- P- Depleted zone Epitaxial Layer e- P+ Substrate Particle M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 3 /25 /17

  4. Charge smearing between pixels One pixel: Fluorescence spectrum of the setup 1000 One "seed" pixel P-Well Diode +20°C 800 e- Depleted P- Epitaxial Layer e- Counts [1/36e] zone P+ 600 Photon 400 Pixel charge smearing 200 Ag K α (cal) Cd-109-source Ag K β (support is built up Ag K α ,K β of brass) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Collected electrons [ke] Chip (PCB contains Ba) Drawback: Charge smearing M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 4 /25 /17

  5. Cluster of 25 pixels Cluster of 25 pixels Fluorescence spectrum of the setup 1000 One "seed" pixel Cluster P-Well Diode +20°C 800 Ag K α (cal) e- Depleted P- Epitaxial Layer e- Counts [1/36e] zone Ba L α P+ 600 Photon 400 Cu K α 200 Ag K β Cd-109-source (support is built up Ag K α ,K β of brass) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Collected electrons [ke] Chip (PCB contains Ba) Disadvantage: Noise contribution of 25 pixels M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 5 /25 /17

  6. Trigger on conversions in the depleted zone Fluorescence spectrum of the setup Depleted zone P-Well Diode 250 +20°C e- e- Depleted P- Epitaxial Layer Counts [1/36e] 200 zone P+ 150 Ba L α Photon 100 Ag K α (cal) Cu K α 50 Zn K α V K α Cd-109-source Ag K β (support is built up Ag K α ,K β 0 of brass) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Collected electrons [ke] Chip (PCB contains Ba) Triggercondition: Neighboring pixel carry no charge M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 6 /25 /17

  7. Trigger on conversions in the depleted zone Fluorescence spectrum of the setup 1000 Depleted zone 950 Cluster 900 P-Well Diode +20°C 850 e- e- 800 Depleted 750 P- Epitaxial Layer Counts [1/36e] 700 zone 650 P+ 600 550 Ba L α 500 Photon 450 400 350 300 Ag K α (cal) 250 Cu K α 200 150 Zn K α V K α Cd-109-source 100 Ag K β 50 (support is built up Ag K α ,K β 0 of brass) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Collected electrons [ke] Chip (PCB contains Ba) Drawback: Reduced quantum efficiency M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 7 /25 /17

  8. Linearity of amplification chain Ag K β +20°C 25 Energy of the identified peak [keV] Ag K α 20 15 10 Cu K α Zn K α Mn K β Ba L α Mn K α 5 V K α Energy[keV]=(0.0364±0.0004) · Q coll [ADC]+(-0.004±0.05) 0 0 100 200 300 400 500 600 700 Charge collected [ADC] Linear energy scale at least between a few keV up to 25keV M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 8 /25 /17

  9. Strategies to increase the quantum efficiency High-resistivity: Decrease of doping concentration in epitaxial layer. Depletion voltage: Increase the depleted volume Low-resistivity ~ 30 Ω cm High-resistivity ~1k Ω cm SiO 2 Sensing diode P-Well N+ P+ P- Epitaxial Layer Substrate P+ depleted volume Larger depleted volumes: ⇒ Accelerated charge collection, less diffusion ⇒ Less charge smearing between pixels Aim: Full depletion of the epitaxial layer M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 9 /25 /17

  10. TOWER-Jazz-Process High-resistivity: Decrease of doping concentration in epitaxial layer. Depletion voltage: Increase the depleted volume Low-resistivity ~ 30 Ω cm High-resistivity ~1k Ω cm TOWER-Jazz-0.18µm process - High-Resistivity 1-8k Ω cm SiO 2 - Depletion voltage up to 20V Sensing diode P-Well N+ P+ P- Epitaxial Layer Substrate P+ depleted volume Modified preamplifier Larger depleted volumes: - Recharge diode ⇒ Accelerated charge collection, less diffusion - AC-coupled ⇒ Less charge smearing between pixels Aim: Full depletion of the epitaxial layer M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 10 /25 /17

  11. TOWER-Jazz 0.18µm CMOS process for imager The Sensor: PEGASUS (2015) 18µm thick, 25µm pixel pitch, >1k Ω cm epitaxial layer, 12 V bias voltage Pegasus, T= +20°C Cd-109-source Ag L α One "seed" pixel 300 Counts [1/40 e] Cd-109-source 225 Cu K α Ag K α ,K β Ag K α Calibration peak Cu-foil 150 Cu K β 75 Ag K β 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Less charge smearing Collected energy [keV] ⇒ Larger depletion zone M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 11 /25 /17

  12. TOWER-Jazz 0.18µm CMOS process for imager The Sensor: PEGASUS (2015) 18µm thick, 25µm pixel pitch, >1k Ω cm epitaxial ayer, 12 V bias voltage Pegasus, T= +20°C Cd-109-source Ag L α One "seed" pixel 300 Depleted zone Counts [1/40 e] Cd-109-source 225 Cu K α Ag K α ,K β Ag K α Calibration peak Cu-foil 150 Cu K β 75 Ag K β 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Less charge smearing Collected energy [keV] ⇒ Larger depletion zone Trigger on neighboring pixels still helps M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 12 /25 /17

  13. Influence of the leakage current T= +20°C Cu-K α = 8135 eV Literature: 1000 600 Cu-K α 1 =8047 eV T= -20°C Cu-K α = 8035 eV T= +20°C 550 900 Cu-K α 2 =8027 eV T= -20°C 500 800 Counts [1/80 e] Counts [1/80 e] 450 700 400 600 σ +20°C =637eV 350 σ -20°C =215eV 500 300 250 400 200 300 150 200 100 100 50 0 0 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,0 20,0 20,5 21,0 21,5 22,0 22,5 23,0 23,5 24,0 Collected energy [keV] Collected energy [keV] Due to the non-linear response of the recharge diode at +20°C : - Limited energy resolution - Non-linear amplification ⇒ Optimizing of the pixel layout required (Pegasus-3) ⇒ Cooling to -20°C so far helps M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 13 /25 /17

  14. Cu-inlay Pegasus, T= -20°C Cd-109-source (norm. to detected Ag K α -Photons) 1350 Reference 1200 Cu-inlay 1050 Counts [1/80 e] Cu K α =8040 eV Cd-109-source 900 σ =122eV Ag K α ,K β 750 Ag K α Cu-foil 600 Ag K α ,K β +Cu K α 450 Ag L α 300 Ag K β Cu K β 150 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Collected energy [keV] Expected excess in Cu-K α -line observed Energy resolution is σ =122eV M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 14 /25 /17

  15. Conclusion Application: Real-time water analysis via X-ray fluorescence analysis ⇒ CMOS-Sensors proposed Studied two CMOS-sensors: MIMOSA-19 and Pegasus Possible above 2 keV with an energy resolution of 120…190eV At room temperature or slightly cooled conditions ⇒ Sensors seem suited for the task Outlook: Obtain higher quantum efficiency due to full depleted epitaxial layer Detailed study of high-voltage CMOS-sensors required DFG proposal submitted M. Deveaux, D. Doering: An XRF spectrometer using CMOS-sensors DPG Darmstadt March 2016 15 /25 /17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend