volume reduction through perturbative wilson loops
play

Volume reduction through perturbative Wilson loops Margarita Garca - PowerPoint PPT Presentation

Instituto de Fsica Terica UAM-CSIC Volume reduction through perturbative Wilson loops Margarita Garca Prez In collaboration with Antonio Gonzlez-Arroyo, Masanori Okawa Eguchi & Kawai 82 Eguchi-Kawai volume reduction 2 N 2


  1. Instituto de Física Teórica UAM-CSIC Volume reduction through perturbative Wilson loops Margarita García Pérez In collaboration with Antonio González-Arroyo, Masanori Okawa

  2. Eguchi & Kawai 82 Eguchi-Kawai volume reduction β 2 N 2 = λ − 1 fixed b = L 4 lattice L Large N observable on a O ∞ ( b ) = lim N →∞ lim L →∞ O ( b, N, L ) L 4 lattice

  3. Eguchi & Kawai 82 Eguchi-Kawai volume reduction β 2 N 2 = λ − 1 fixed b = L 4 lattice L Large N observable on a O ∞ ( b ) = lim N →∞ lim L →∞ O ( b, N, L ) L 4 lattice

  4. Eguchi & Kawai 82 Eguchi-Kawai volume reduction β 2 N 2 = λ − 1 fixed b = L 4 lattice L Large N observable on a O ∞ ( b ) = lim N →∞ lim L →∞ O ( b, N, L ) L 4 lattice Eguchi-Kawai reduction O ∞ ( b ) = lim N →∞ O ( b, N, L = 1) Thermodynamic limit U µ ∈ SU ( N ) irrespective of L one-point lattice

  5. Conditions Volume independence of single trace observables if Z ( N ) d Tr ( ) = 0 Center symmetry preserved Bhanot, Heller & Neuberger Depends on boundary conditions For tbc k, ¯ González-Arroyo & Okawa k ∝ N For pbc Narayanan & Neuberger L > L c Depends on matter content Pbc with adjoint fermions Kotvun, Unsal & Yaffe Amber, Basar, Cherman, Dorigoni, Hanada, Koren, Poppitz, Sharpe,…

  6. ✦ In this talk: Test volume reduction for Wilson loops in lattice perturbation theory with twisted boundary conditions SU ( N ) gauge theory on a lattice L 4 log W ( b, N, L ) = − W 1 ( N, L ) λ − W 2 ( N, L ) λ 2 Compare with pbc Heller&Karsch Compare with infinite volume Weisz, Wetzel & Wohlert

  7. Twisted boundary conditions Twist L 4 lattice X X µ ) U † ν ) U † S = bN [ N − Z µ ν ( n )Tr( U µ ( n ) U ν ( n + ˆ µ ( n + ˆ ν ( n ))] n µ ν n β 1 2 N 2 = λ − 1 b = L Z µ ν = 2 ⇡ i k n o n µ = n ν = L − 1 exp ✏ µ ν √ N λ = g 2 N symmetric twist ’t Hooft coupling k and co-prime k, ¯ √ k ∝ N N González-Arroyo & Okawa

  8. Perturbation theory U µ ( n ) = e − igA µ ( n ) Γ µ ( n ) Periodic links U µ ( n ) = U µ ( n + L ˆ ν ) n for n µ 6 = L � 1 1 1 Γ µ ( n ) = Γ µ for n µ = L − 1 with twist eaters Γ µ Γ ν = Z ν µ Γ ν Γ µ Note: zero momentum not compatible with the boundary conditions Luscher&Weisz, Gonzalez-Arroyo & Korthals-Altes, Snippe

  9. To implement boundary conditions ν ) = Γ ν A µ ( x ) Γ † A µ ( x + l ˆ ν µ ( p ) T a A a 0 A µ ( n ) = 1 2 ) ˆ e ip ( n + 1 A µ ( p )ˆ X Γ ( p ) L 2 p ˆ Γ ( p ) ∝ Γ s 1 1 Γ s 2 2 · · · Γ s d momentum dependent d basis for the SU(N) Lie algebra To satisfy b.c. momentum is quantised in units of p µ = 2 π m µ L e ff Effective box - size √ L e ff = L N TEK L = 1 l e ff = ∞ √ l e ff = a N thermodynamic limit N → ∞ , a fixed

  10. Perturbation theory • Momentum quantized in units of L e ff • Free propagator identical that on a finite lattice L e ff • Group structure constants Γ ( p ) r ✓ θ µ ν ◆ 2 F ( p, q, − p − q ) = − N sin 2 p µ q ν Momentum dependent phases in the vertices θ = 2 π ¯ k ˜ √ N ✓ µ ν = L 2 ✏ µ ν ˜ e ff ✓ 4 ⇡ 2 × ˜ ¯ √ kk = 1 (mod N ) Links to non-commutative gauge theories González-Arroyo, Korthals Altes, Okawa

  11. Volume independence r 2 λ ⇣ θ µ ν ⌘ sin 2 p µ q ν Vertices α V e ff In perturbation theory, ˜ θ , λ , L e ff ˜ For fixed , volume and N dependence encoded in the effective size θ

  12. Comment Certain momenta excluded by the twist in SU(N) ✦ Tr ˆ 0 Γ ( p ) = 0 A µ ( n ) = 1 2 ) ˆ e ip ( n + 1 A µ ( p )ˆ X Γ ( p ) L 2 p Exclude √ p µ = 2 π n µ n µ = 0 (mod N ) ∀ µ L e ff p µ = 2 π n µ Lattice of momenta , ∀ µ Λ L eff L Reintroduces N dependence - gives correct number of degrees of freedom e ff − L 4 = L 4 ( N 2 − 1) degrees of freedom L 4 p ∈ Λ L eff \ Λ L

  13. ✦ The Wilson loop at O ( λ ) X 0 q 2 q 2 sin 2 ( Rq µ / 2) sin 2 ( Tq ν / 2) b µ + b 1 W ( R ⇥ T ) ˜ ν ( N, L, k ) = 1 q 2 q 2 q 2 4 V e ff b µ b b ν q The same as with pbc but with different set of momenta 0 1 1 1 X X X − N 2 L 4 N 2 L 4 V e ff e ff q ∈ Λ 0 q ∈ Λ 0 q L eff L Exclude momenta in Momenta in Momenta in Λ 0 Λ 0 Λ L L eff L L √ L e ff = L N Zero momentum excluded in all cases

  14. The Wilson loop at O ( λ ) 1 Effective size correction For TBC N 2 N ) − 1 √ W 1 ( N, L ) = F 1 ( L N 2 F 1 ( L ) − → F 1 ( ∞ ) N → ∞ Volume independence MGP , González-Arroyo & Okawa For PBC W 1 ( N, L ) = F 1 ( L ) N 2 − 1 → F 1 ( L ) − N 2 N → ∞ Heller&Karsch retains L dependence

  15. ✦ The Wilson loop at O ( λ 2 ) With periodic boundary conditions Heller&Karsch ( L, N, k = 0) = (1 − 1 N 2 ) F 2 ( L ) + (1 − 1 W pbc N 2 ) 2 F W ( L ) 2 Tadpole F W ( L ) = 1 1 − 1 ⇣ ⌘ F 1 ( L ) 8 V For N → ∞ W pbc ( L, N = ∞ , k = 0) = F 2 ( L ) + F W ( L ) 2 retains L dependence

  16. The Wilson loop at with tbc O ( λ 2 ) Non-abelian terms containing the structure constant NF 2 ( p, q, − p − q ) = 1 − cos( θ µ ν p µ q ν ) It is zero for momenta in Λ L 0 1 1 1 X F 2 X X cos( θ µ ν p µ p ν ) − NL 4 L 4 L 4 e ff e ff q q ∈ Λ 0 q ∈ Λ 0 L eff L eff Planar diagrams Non-planar diagrams The same structure Contain all the dependence as pbc on the twist

  17. With twisted boundary conditions 1 Effective size corrections N 2 } N ) − 1 ⇣ √ ⌘ W tbc ( L, N, k ) = F 2 ( L N 2 F 2 ( L ) 2 Planar diagrams +1 1 − 1 N ) − F 1 ( L ) √ ⇣ ⌘⇣ ⌘ F 1 ( L − 1 8 N 2 N 2 N 2 F NA ( L ) 2 } Non-planar + F 2 T ( L, N, k ) diagrams θ = 2 π ¯ + 1 k ¯ twist dependence ˜ √ N 2 F NA kk = 1 (mod N ) ( L ) 2 √ N

  18. For TBC large N limit Volume independence Correct W tbc ( L, N = ∞ , k ) = F 2 ( ∞ ) + F W ( ∞ ) thermodynamic limit 2 + F 2 T ( L, N = ∞ , k ) For volume independence to hold it is essential that N →∞ F 2 T = 0 lim

  19. Non-planar diagrams Suppressed as 1 /V e ff Goes to zero both for N infinity or L infinity Plaquette correction 0.3 L=1 k=1 L=1 k=2 Plaquette L=1 k=3 L=1 k=4 0.25 L=2 k=1 L=2 k=2 L=2 k=3 V e ff F 2 T ( L, N, k ) L=3 k>0 L=4 k>0 0.2 L>4 L=1 k>4 L=2 k>3 slower rate V eff F 2T 0.15 1 /L 4 − α e ff 0.1 0.05 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ¯ k kbar/Lhat √ N

  20. For TBC large V limit 1 − 1 1 − 1 ⌘ 2 ⇣ ⌘ ⇣ W tbc ( L = ∞ , N, k ) = F 2 ( ∞ ) + F W ( ∞ ) 2 N 2 N 2 The formula reproduces the correct infinite volume limit We have used that F 2 T goes to zero in the thermodynamic limit

  21. ˜ Numerically LOOP F 1 ( ∞ ) F 2 ( ∞ ) W 2 ( ∞ , ∞ ) evaluated 1 × 1 0.125 -0.0027055703(3) 0.0129194297(3) 2 × 2 0.34232788379 -0.00101077(1) 0.04178022(1) Consistent with 3 × 3 0.57629826424 0.00295130(2) 0.07498858(2) B. Alles e.a 4 × 4 0.81537096352 0.0076217(1) 0.1095431(1) F 1 ( ∞ ) F 2 ( ∞ ) F 2 ( L ) = F NA ( L ) + F meas ( L ) 2 2x2 loop -0.13 -0.135 -0.14 -0.145 L 4 { F 2 (L) - F 2 ( ∞ ) } -0.15 -0.155 -0.16 -0.165 -0.17 -0.175 -0.18 10 20 30 L F 2 ( L ) = F 2 ( ∞ ) − R 2 T 2 ( γ 2 + γ 0 2 log( L )) + . . . Bali e.a. L 4

  22. For Twisted Eguchi-Kawai L=1 Simplification F i ( L = 1) = 0 √ ( L = 1 , N, k ) = W pbc W tbc ( L = N, ∞ , 0) 1 1 √ ( L = 1 , N, k ) = W pbc W tbc ( L = N, ∞ , 0) + F 2 T ( L = 1 , N, k ) 2 2 Non-planar Effective size √ L = N contribution Effective colour N = ∞ N →∞ F 2 T = 0 lim

  23. Summary • We have analysed the PT expansion of Wilson loops with tbc • The expansion is expressed in terms of 3 functions: F 1 ( L ) , F 2 ( L ) , F 2 T ( L, N.k ) • Volume independence holds as far as N →∞ F 2 T = 0 lim • Our analysis shows that this holds, also for TEK on the one-site lattice • The code developed can be applied to other twists and number of dimensions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend