incidence bialgebras of monoidal categories
play

Incidence bialgebras of monoidal categories Lucia Rotheray TU - PowerPoint PPT Presentation

Incidence bialgebras of monoidal categories Lucia Rotheray TU Dresden Oslo, 30.07.2019 Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 1 / 13 Idea For a (nice) monoidal category ( C , , 1) and a


  1. Incidence bialgebras of monoidal categories Lucia Rotheray TU Dresden Oslo, 30.07.2019 Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 1 / 13

  2. Idea For a (nice) monoidal category ( C , ⊗ , 1) and a field k we will construct a bialgebra on the k -vector space span k ( Mor C ). Monoidal product � multiplication Unit object � unit element Composition � coproduct Identity morphisms � counit. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 2 / 13

  3. Motivation There are several combinatorial Hopf algebras with coproducts of the form � ∆(Γ) = Γ /γ ⊗ γ. ���� γ ⊆ Γ some sort of contraction For example: ⊗ 1 + 1 ⊗ ⊗ ∆( ) = + ∆( ) = ⊗ 1 + 1 ⊗ + ⊗ Slight change of perspective: � γ 1 ⊗ γ 2 . ∆(Γ) = γ 1 ◦ γ 2 =Γ � �� � some sort of composition Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 3 / 13

  4. The algebra structure Lemma Let ( C , · , 1) be a (small, strict) monoidal category, k a field and k C the k-vector space spanned by Mor C . Then ( k C , · , i 1 ) defines an associative unital k-algebra. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 4 / 13

  5. The coalgebra structure Definition (Decompositions and length) Given f ∈ Mor C and n ∈ N , we define: N n ( f ) = { ( f 1 , . . . , f n ) ∈ C × n | f 1 ◦ . . . ◦ f n = f } N n ( f ) = { ( f 1 , . . . , f n ) ∈ ( C \ Id C ) × n | f 1 ◦ . . . ◦ f n = f } ˆ ℓ ( f ) = sup { n ∈ N | ˆ N n ( f ) � = ∅} . Definition (Locally finite category) C is called locally finite if | N 2 ( f ) | is finite for every f ∈ Mor C . Definition (M¨ obius category) C is called M¨ obius if it is locally finite and every morphism has finite length. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 5 / 13

  6. The coalgebra structure Theorem (Joni and Rota ’79) Let C be a category, k a field and k C the k-vector space spanned by Mor C . The following defines a coassociative counital k-coalgebra structure on k C iff C is locally finite: � 1 f ∈ Id C � ∆( f ) = f 1 ⊗ f 2 , ε ( f ) = ∈ Id C 0 , f / ( f 1 , f 2 ) ∈ N 2 ( f ) Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 6 / 13

  7. Examples Example Let ( P , � ) be a poset and C P the category defined by � ( x , y ) , x � y Ob C P = P , C P ( x , y ) = . ∅ , else C P is M¨ obius and locally finite iff every interval [ x , y ] := { z ∈ P | x � z � y } is finite. Example The path category of a quiver is locally finite and M¨ obius. Example The PROP whose morphisms are (operadic) rooted forests is locally finite. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 7 / 13

  8. The bialgebra structure Definition (ULF property) A functor F : C → D has the unique lifting of factorisations property if the map N 2 ( f ) → N 2 ( Ff ) ( f 1 , f 2 ) �→ ( Ff 1 , Ff 2 ) is bijective for all f ∈ C . Lemma ULF functors reflect identity morphisms, i.e. f ∈ Id C ⇔ Ff ∈ Id D . We are interested in the case F = · , i.e. we want a bijection N 2 ( f ) × N 2 ( g ) → N 2 ( f · g ) (( f 1 , f 2 ) , ( g 1 , g 2 )) �→ ( f 1 · g 1 , f 2 · g 2 ) for all f , g ∈ C . Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 8 / 13

  9. The bialgebra structure Theorem Let ( C , · , 1) be a monoidal category, k a field and k C the k-vector space spanned by Mor C and ( k C , ∆ , ε ) denote the incidence coalgebra structure and ( k C , · , i 1 ) the k-algebra structure defined above. If C is M¨ obius and · has the ULF property, the following hold: 1 ( k C , · , i 1 , ∆ , ε ) is a k-bialgebra. 2 This bialgebra is a Hopf algebra if and only if ( Ob C , · ) forms a group. Proof. ε ( i 1 ) = 1 as i 1 is an identity. ULF functors reflect identities ⇒ ǫ ( f · g ) = ǫ ( f ) ǫ ( g ). C M¨ obius ⇒ ∆( i x ) = i x ⊗ i x ∀ x ∈ Ob C , in particular ∆(1) = 1 ⊗ 1. · ULF ⇒ ∆( f · g ) = ∆( f )∆( g ) and ε ( f · g ) = ε ( f ) ε ( g ). If C is M¨ obius, ( k C , ∆ , ε ) is pointed.Then we can apply Theorem: A pointed bialgebra is a Hopf algebra if and only if every group-like element is invertible. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 9 / 13

  10. Example Let ( M , · , 1) be a monoid with a partial relation � satisfying x � y ∧ z � t ⇒ x · z � y · t and C M the category defined by � ( x , y ) , x � y Ob C M = M , C M ( x , y ) = . 0 , else The ULF condition for · becomes “[ x , y ] × [ z , t ] → [ x · z , y · t ] is a bijection”. Example The path category of a quiver does not admit a ULF monoidal product. Example The disjoint union of planar rooted forests is ULF. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 10 / 13

  11. A more in-depth example Let S be the monoid of (0 , 1) strings of finite length where the product is tacking one string onto the end of another, e.g. · = We impose the following partial order on S : If p , q have the same number of 1s and 0s, we define i i � � q � p ⇔ p j ≥ q j ∀ i = 1 , . . . , h + w j =1 j =1 This gives us a category C S as previously described. Viewing the strings as paths lets us view the morphisms as skew-shapes (with extra group like ”legs”). Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 11 / 13

  12. Skew shape category/bialgebra Composition: ◦ = monoidal product: · = Coproduct: ∆( ) = ⊗ + ⊗ + ⊗ ⊗ ⊗ + + Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 12 / 13

  13. Further reading (Weak) incidence bialgebras of monoidal categories (Ulrich Kraehmer, L.R.), arXiv:1803.07897v4. S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics , Stud. Appl. Math., 61 (1979), pp. 93–139. P. Leroux Les Categories de M¨ obius Cahiers de Topologie et G` eometrie Diff` erentielle Cat` egoriques, 16(3):280–282, 1975. F. W. Lawvere and M. Menni, The Hopf Algebra of M¨ obius Intervals Theory and Applications of Categories, Vol. 24, No. 10, 2010, pp. 221–265. Imma G` alvez-Carillo, Joachim Kock and Andrew Tonks, Decomposition Spaces, incidence algebras and M¨ obius inversion III: the decomposition space of M¨ obius intervals. 2015 arXiv:1512.07580 Ralph M. Kaufmann, Benjamin C. Ward Feyman Categories arXiv:1312.1269v3 Claude Cibils and Marc Rosso, Hopf quivers , 2000 arXiv:math/0009106. Lucia Rotheray (TU Dresden) Incidence bialgebras of monoidal categories Oslo, 30.07.2019 13 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend