augmented quasigroups from group duals to heyting algebras
play

Augmented quasigroups: from group duals to Heyting algebras - PowerPoint PPT Presentation

Augmented quasigroups: from group duals to Heyting algebras Jonathan D.H. Smith Iowa State University email: jdhsmith@iastate.edu https://orion.math.iastate.edu/jdhsmith/ Symmetric monoidal categories Symmetric monoidal categories A symmetric


  1. ✤ ✤ Finite-dimensional real vector spaces Suppose spaces A, B have respective finite bases X, Y , so A ⊗ B has basis X × Y = { x ⊗ y | x ∈ X , y ∈ Y } . Unit object 1 = R , with basis { 1 } . Duality functor ∗ : R → R ; A �→ A ∗ = R ( A, R ) Evaluation ev A : A ⊗ A ∗ → R ; x ′ ⊗ δ x �→ x ′ δ x = δ x ′ ,x Coevaluation coev A : R → A ∗ ⊗ A ; 1 �→ ∑ x ∈ X δ x ⊗ x First yanking condition r − 1 � x ′ ⊗ ∑ x ∈ X δ x ⊗ x ✤ ev ⊗ 1 A � ∑ 1 A ⊗ coev x ∈ X x ′ δ x ⊗ x = 1 ⊗ x ′ ✤ l A � x ′ A � x ′ ⊗ 1 x ′

  2. Examples of compact-closed categories

  3. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; •

  4. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; •

  5. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; •

  6. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , •

  7. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , • - tensor product A ⊗ B is the Cartesian product,

  8. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , • - tensor product A ⊗ B is the Cartesian product, - biproduct A ⊕ B is the disjoint union,

  9. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , • - tensor product A ⊗ B is the Cartesian product, - dual A ∗ = A , - biproduct A ⊕ B is the disjoint union,

  10. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , • - tensor product A ⊗ B is the Cartesian product, - dual A ∗ = A , - biproduct A ⊕ B is the disjoint union, - ev A = { ( a ⊗ a, 0) | a ∈ A } ,

  11. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , • - tensor product A ⊗ B is the Cartesian product, - dual A ∗ = A , - biproduct A ⊕ B is the disjoint union, - ev A = { ( a ⊗ a, 0) | a ∈ A } , - coev A = { (0 , a ⊗ a ) | a ∈ A } ,

  12. Examples of compact-closed categories The category of finite-dimensional Hilbert spaces; • Categories of finitely-generated free semimodules over a semiring; • Joyal’s category of Conway games; • The category ( Rel , ⊗ , ⊤ ) of relations between sets, say ⊤ = { 0 } , • - tensor product A ⊗ B is the Cartesian product, - dual A ∗ = A , - biproduct A ⊕ B is the disjoint union, - ev A = { ( a ⊗ a, 0) | a ∈ A } , - coev A = { (0 , a ⊗ a ) | a ∈ A } , - yanking { ( a, a ⊗ b ⊗ b ) | a, b ∈ A } ◦ { ( a ⊗ a ⊗ b, b ) | a, b ∈ A } = � A .

  13. Augmented magmas

  14. Augmented magmas Augmented magma: ( A, µ, ∆ , ε ) in compact closed ( V , ⊗ , 1 ) with:

  15. Augmented magmas Augmented magma: ( A, µ, ∆ , ε ) in compact closed ( V , ⊗ , 1 ) with: multiplication ( structure ) µ : A ⊗ A → A ∗ ,

  16. Augmented magmas Augmented magma: ( A, µ, ∆ , ε ) in compact closed ( V , ⊗ , 1 ) with: multiplication ( structure ) µ : A ⊗ A → A ∗ , comultiplication ∆: A → A ⊗ A ,

  17. Augmented magmas Augmented magma: ( A, µ, ∆ , ε ) in compact closed ( V , ⊗ , 1 ) with: multiplication ( structure ) µ : A ⊗ A → A ∗ , comultiplication ∆: A → A ⊗ A , and augmentation ε : A → 1 ,

  18. � � � � Augmented magmas Augmented magma: ( A, µ, ∆ , ε ) in compact closed ( V , ⊗ , 1 ) with: multiplication ( structure ) µ : A ⊗ A → A ∗ , comultiplication ∆: A → A ⊗ A , and augmentation ε : A → 1 , such that coev A ⊗ µ 1 A ∗ ⊗ ∆ ⊗ 1 A ∗ A ∗ ⊗ A ⊗ A ∗ � A ∗ ⊗ A ⊗ A ⊗ A ∗ A ⊗ A τ ⊗ ev A ε ⊗ ε A ⊗ A ∗ 1 ev A commutes.

  19. Group algebras as augmented magmas

  20. Group algebras as augmented magmas Commutative, unital ring R , finite group G , group algebra RG .

  21. Group algebras as augmented magmas Commutative, unital ring R , finite group G , group algebra RG . Hopf algebra ( RG, ∇ , η, ∆ , ε, S ) with ∆: g �→ g ⊗ g and ε : g → 1

  22. Group algebras as augmented magmas Commutative, unital ring R , finite group G , group algebra RG . Hopf algebra ( RG, ∇ , η, ∆ , ε, S ) with ∆: g �→ g ⊗ g and ε : g → 1 gives augmented magma ( RG, µ, ∆ , ε ) in ( R, ⊗ , R ) with multiplication structure µ : RG ⊗ RG → RG ∗ ; g ⊗ h �→ [ δ gh : x �→ δ x,gh ] .

  23. � � ✤ � ✤ � Group algebras as augmented magmas Commutative, unital ring R , finite group G , group algebra RG . Hopf algebra ( RG, ∇ , η, ∆ , ε, S ) with ∆: g �→ g ⊗ g and ε : g → 1 gives augmented magma ( RG, µ, ∆ , ε ) in ( R, ⊗ , R ) with multiplication structure µ : RG ⊗ RG → RG ∗ ; g ⊗ h �→ [ δ gh : x �→ δ x,gh ] . Diagram chase for the augmented magma condition: coev A ⊗ µ 1 A ∗ ⊗ ∆ ⊗ 1 A ∗ ∑ � ∑ g ⊗ h ✤ x ∈ G δ x ⊗ x ⊗ δ gh x ∈ G δ x ⊗ x ⊗ x ⊗ δ gh ❴ ❴ ε ⊗ ε τ ⊗ ev A ∑ 1 = δ gh,gh x ∈ G δ x,gh ( x ⊗ δ x ) ev A

  24. ✤ � � ✤ � � Group algebras as augmented magmas Commutative, unital ring R , finite group G , group algebra RG . Hopf algebra ( RG, ∇ , η, ∆ , ε, S ) with ∆: g �→ g ⊗ g and ε : g → 1 gives augmented magma ( RG, µ, ∆ , ε ) in ( R, ⊗ , R ) with multiplication structure µ : RG ⊗ RG → RG ∗ ; g ⊗ h �→ [ δ gh : x �→ δ x,gh ] . Diagram chase for the augmented magma condition: coev A ⊗ µ 1 A ∗ ⊗ ∆ ⊗ 1 A ∗ ∑ � ∑ g ⊗ h ✤ x ∈ G δ x ⊗ x ⊗ δ gh x ∈ G δ x ⊗ x ⊗ x ⊗ δ gh ❴ ❴ ε ⊗ ε τ ⊗ ev A ∑ 1 = δ gh,gh x ∈ G δ x,gh ( x ⊗ δ x ) ev A Remark: If R = Z , then ε : g �→ 1 is the augmentation in Z G .

  25. ✤ � � ✤ � � Group algebras as augmented magmas Commutative, unital ring R , finite group G , group algebra RG . Hopf algebra ( RG, ∇ , η, ∆ , ε, S ) with ∆: g �→ g ⊗ g and ε : g → 1 gives augmented magma ( RG, µ, ∆ , ε ) in ( R, ⊗ , R ) with multiplication structure µ : RG ⊗ RG → RG ∗ ; g ⊗ h �→ [ δ gh : x �→ δ x,gh ] . Diagram chase for the augmented magma condition: coev A ⊗ µ 1 A ∗ ⊗ ∆ ⊗ 1 A ∗ ∑ � ∑ g ⊗ h ✤ x ∈ G δ x ⊗ x ⊗ δ gh x ∈ G δ x ⊗ x ⊗ x ⊗ δ gh ❴ ❴ ε ⊗ ε τ ⊗ ev A ∑ 1 = δ gh,gh x ∈ G δ x,gh ( x ⊗ δ x ) ev A Remark: If R = Z , then ε : g �→ 1 is the augmentation in Z G . In general, the augmentation need not be a counit for ∆.

  26. Hypermagmas

  27. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y .

  28. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } ,

  29. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation,

  30. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation, and multiplication relation { ( x ⊗ y, z ) | x, y, z ∈ A, z ∈ x ⋄ y } .

  31. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation, and multiplication relation { ( x ⊗ y, z ) | x, y, z ∈ A, z ∈ x ⋄ y } . Hypermagma: x ⋄ y is nonempty for all x, y in A .

  32. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation, and multiplication relation { ( x ⊗ y, z ) | x, y, z ∈ A, z ∈ x ⋄ y } . Hypermagma: x ⋄ y is nonempty for all x, y in A . Theorem: Set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y

  33. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation, and multiplication relation { ( x ⊗ y, z ) | x, y, z ∈ A, z ∈ x ⋄ y } . Hypermagma: x ⋄ y is nonempty for all x, y in A . Theorem: Set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y forms a hypermagma if and only if ( A, µ, ∆ , ε ) is an augmented magma in the category ( Rel , ⊗ , ⊤ ).

  34. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation, and multiplication relation { ( x ⊗ y, z ) | x, y, z ∈ A, z ∈ x ⋄ y } . Hypermagma: x ⋄ y is nonempty for all x, y in A . Theorem: Set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y forms a hypermagma if and only if ( A, µ, ∆ , ε ) is an augmented magma in the category ( Rel , ⊗ , ⊤ ). Magmas and hypermagmas treated uniformly, regardless of type!

  35. Hypermagmas Consider set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y . In ( Rel , ⊗ , ⊤ ), take augmentation ε = { ( x, 0) | x ∈ A } , comultiplication ∆ = { ( x, x ⊗ x ) | x ∈ A } , i.e., diagonal relation, and multiplication relation { ( x ⊗ y, z ) | x, y, z ∈ A, z ∈ x ⋄ y } . Hypermagma: x ⋄ y is nonempty for all x, y in A . Theorem: Set A with function A × A → 2 A ; ( x, y ) �→ x ⋄ y forms a hypermagma if and only if ( A, µ, ∆ , ε ) is an augmented magma in the category ( Rel , ⊗ , ⊤ ). Magmas and hypermagmas treated uniformly, regardless of type! In the magma case, ( A, µ, ∆ , ε ) lies in ( Set , ⊗ , ⊤ ).

  36. Currying and braiding in compact closed categories

  37. Currying and braiding in compact closed categories Compact closed category ( V , ⊗ , 1 ).

  38. Currying and braiding in compact closed categories Compact closed category ( V , ⊗ , 1 ). Lemma: There is a natural isomorphism with components φ A,B,C : V ( B ⊗ A, C ) → V ( B, C ⊗ A ∗ ) at objects A, B, C of V .

  39. Currying and braiding in compact closed categories Compact closed category ( V , ⊗ , 1 ). Lemma: There is a natural isomorphism with components φ A,B,C : V ( B ⊗ A, C ) → V ( B, C ⊗ A ∗ ) at objects A, B, C of V . For an object A of V , define τ 13 : A 3 ⊗ A 2 ⊗ A 1 → A 1 ⊗ A 2 ⊗ A 3 ; a 3 ⊗ a 2 ⊗ a 1 �→ a 1 ⊗ a 2 ⊗ a 3

  40. Currying and braiding in compact closed categories Compact closed category ( V , ⊗ , 1 ). Lemma: There is a natural isomorphism with components φ A,B,C : V ( B ⊗ A, C ) → V ( B, C ⊗ A ∗ ) at objects A, B, C of V . For an object A of V , define τ 13 : A 3 ⊗ A 2 ⊗ A 1 → A 1 ⊗ A 2 ⊗ A 3 ; a 3 ⊗ a 2 ⊗ a 1 �→ a 1 ⊗ a 2 ⊗ a 3 and τ 23 : A 1 ⊗ A 3 ⊗ A 2 → A 1 ⊗ A 2 ⊗ A 3 ; a 1 ⊗ a 3 ⊗ a 2 �→ a 1 ⊗ a 2 ⊗ a 3

  41. Augmented quasigroups

  42. Augmented quasigroups Given an augmented magma ( A, µ, ∆ , ε ) in ( V , ⊗ , 1 ),

  43. Augmented quasigroups Given an augmented magma ( A, µ, ∆ , ε ) in ( V , ⊗ , 1 ), have right division ( structure ) ρ : A ⊗ A → A ∗ with ρ = µφ − 1 A,A ⊗ A, 1 τ ∗ 13 φ A,A ⊗ A, 1

  44. Augmented quasigroups Given an augmented magma ( A, µ, ∆ , ε ) in ( V , ⊗ , 1 ), have right division ( structure ) ρ : A ⊗ A → A ∗ with ρ = µφ − 1 A,A ⊗ A, 1 τ ∗ 13 φ A,A ⊗ A, 1 and left division ( structure ) λ : A ⊗ A → A ∗ with λ = µφ − 1 A,A ⊗ A, 1 τ ∗ 23 φ A,A ⊗ A, 1 .

  45. Augmented quasigroups Given an augmented magma ( A, µ, ∆ , ε ) in ( V , ⊗ , 1 ), have right division ( structure ) ρ : A ⊗ A → A ∗ with ρ = µφ − 1 A,A ⊗ A, 1 τ ∗ 13 φ A,A ⊗ A, 1 and left division ( structure ) λ : A ⊗ A → A ∗ with λ = µφ − 1 A,A ⊗ A, 1 τ ∗ 23 φ A,A ⊗ A, 1 . ( A, µ, ρ, λ, ∆ , ε ) is the ( augmented ) prequasigroup on ( A, µ, ∆ , ε ).

  46. Augmented quasigroups Given an augmented magma ( A, µ, ∆ , ε ) in ( V , ⊗ , 1 ), have right division ( structure ) ρ : A ⊗ A → A ∗ with ρ = µφ − 1 A,A ⊗ A, 1 τ ∗ 13 φ A,A ⊗ A, 1 and left division ( structure ) λ : A ⊗ A → A ∗ with λ = µφ − 1 A,A ⊗ A, 1 τ ∗ 23 φ A,A ⊗ A, 1 . ( A, µ, ρ, λ, ∆ , ε ) is the ( augmented ) prequasigroup on ( A, µ, ∆ , ε ). Augmented quasigroup: Augmented magma ( A, µ, ∆ , ε ) for which ( A, ρ, ∆ , ε ) and ( A, λ, ∆ , ε ) are augmented magmas.

  47. (Quasi-)Group algebras as augmented quasigroups

  48. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ].

  49. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy ,

  50. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy , µ φ − 1 RG,RG ⊗ RG,R τ ∗ whence 13 : z ⊗ y ⊗ x �→ δ z,xy = δ x,zy − 1 = δ x,z/y ,

  51. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy , µ φ − 1 RG,RG ⊗ RG,R τ ∗ whence 13 : z ⊗ y ⊗ x �→ δ z,xy = δ x,zy − 1 = δ x,z/y , so right division µ φ − 1 RG,RG ⊗ RG,R τ ∗ 13 φ RG,RG ⊗ RG,R = ρ : z ⊗ y �→ δ z/y .

  52. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy , µ φ − 1 RG,RG ⊗ RG,R τ ∗ whence 13 : z ⊗ y ⊗ x �→ δ z,xy = δ x,zy − 1 = δ x,z/y , so right division µ φ − 1 RG,RG ⊗ RG,R τ ∗ 13 φ RG,RG ⊗ RG,R = ρ : z ⊗ y �→ δ z/y . Similarly, have left division structure λ : x ⊗ z �→ δ x − 1 z = δ x \ z .

  53. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy , µ φ − 1 RG,RG ⊗ RG,R τ ∗ whence 13 : z ⊗ y ⊗ x �→ δ z,xy = δ x,zy − 1 = δ x,z/y , so right division µ φ − 1 RG,RG ⊗ RG,R τ ∗ 13 φ RG,RG ⊗ RG,R = ρ : z ⊗ y �→ δ z/y . Similarly, have left division structure λ : x ⊗ z �→ δ x − 1 z = δ x \ z . Associativity not used for the augmented magma condition on µ ,

  54. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy , µ φ − 1 RG,RG ⊗ RG,R τ ∗ whence 13 : z ⊗ y ⊗ x �→ δ z,xy = δ x,zy − 1 = δ x,z/y , so right division µ φ − 1 RG,RG ⊗ RG,R τ ∗ 13 φ RG,RG ⊗ RG,R = ρ : z ⊗ y �→ δ z/y . Similarly, have left division structure λ : x ⊗ z �→ δ x − 1 z = δ x \ z . Associativity not used for the augmented magma condition on µ , so conclude that ( RG, µ, ∆ , ε ) is an augmented quasigroup.

  55. (Quasi-)Group algebras as augmented quasigroups Group algebra RG had multiplication structure µ : RG ⊗ RG → RG ∗ ; x ⊗ y �→ [ δ xy : z �→ δ z,xy ]. µφ − 1 Thus RG,RG ⊗ RG,R : x ⊗ y ⊗ z �→ δ z,xy , µ φ − 1 RG,RG ⊗ RG,R τ ∗ whence 13 : z ⊗ y ⊗ x �→ δ z,xy = δ x,zy − 1 = δ x,z/y , so right division µ φ − 1 RG,RG ⊗ RG,R τ ∗ 13 φ RG,RG ⊗ RG,R = ρ : z ⊗ y �→ δ z/y . Similarly, have left division structure λ : x ⊗ z �→ δ x − 1 z = δ x \ z . Associativity not used for the augmented magma condition on µ , so conclude that ( RG, µ, ∆ , ε ) is an augmented quasigroup. Works equally well for a finite quasigroup ( G, · , /, \ ).

  56. Marty quasigroups as augmented quasigroups

  57. Marty quasigroups as augmented quasigroups ( A, ⋄ , ⋌ , ⋋ ) with hypermagma structures ( A, ⋄ ), ( A, ⋌ ), and ( A, ⋋ ) is a Marty quasigroup iff ∀ x, y, z ∈ A , z ∈ x ⋄ y ⇔ x ∈ z ⋌ y ⇔ y ∈ x ⋋ z .

  58. Marty quasigroups as augmented quasigroups ( A, ⋄ , ⋌ , ⋋ ) with hypermagma structures ( A, ⋄ ), ( A, ⋌ ), and ( A, ⋋ ) is a Marty quasigroup iff ∀ x, y, z ∈ A , z ∈ x ⋄ y ⇔ x ∈ z ⋌ y ⇔ y ∈ x ⋋ z . Hypergroup if ⋄ is associative [F. Marty, 1936].

  59. Marty quasigroups as augmented quasigroups ( A, ⋄ , ⋌ , ⋋ ) with hypermagma structures ( A, ⋄ ), ( A, ⋌ ), and ( A, ⋋ ) is a Marty quasigroup iff ∀ x, y, z ∈ A , z ∈ x ⋄ y ⇔ x ∈ z ⋌ y ⇔ y ∈ x ⋋ z . Hypergroup if ⋄ is associative [F. Marty, 1936]. Theorem: Marty quasigroups ≡ augmented quasigroups in ( Rel , ⊗ , ⊤ ).

  60. Marty quasigroups as augmented quasigroups ( A, ⋄ , ⋌ , ⋋ ) with hypermagma structures ( A, ⋄ ), ( A, ⋌ ), and ( A, ⋋ ) is a Marty quasigroup iff ∀ x, y, z ∈ A , z ∈ x ⋄ y ⇔ x ∈ z ⋌ y ⇔ y ∈ x ⋋ z . Hypergroup if ⋄ is associative [F. Marty, 1936]. Theorem: Marty quasigroups ≡ augmented quasigroups in ( Rel , ⊗ , ⊤ ). Corollary: Heyting algebra ( A, ∧ , → ), meet semilattice with y ≤ x → z , x ∧ y ≤ z ⇔ x ≤ y → z ⇔

  61. Marty quasigroups as augmented quasigroups ( A, ⋄ , ⋌ , ⋋ ) with hypermagma structures ( A, ⋄ ), ( A, ⋌ ), and ( A, ⋋ ) is a Marty quasigroup iff ∀ x, y, z ∈ A , z ∈ x ⋄ y ⇔ x ∈ z ⋌ y ⇔ y ∈ x ⋋ z . Hypergroup if ⋄ is associative [F. Marty, 1936]. Theorem: Marty quasigroups ≡ augmented quasigroups in ( Rel , ⊗ , ⊤ ). Corollary: Heyting algebra ( A, ∧ , → ), meet semilattice with y ≤ x → z , x ∧ y ≤ z ⇔ x ≤ y → z ⇔ is a Marty quasigroup or augmented quasigroup in ( Rel , ⊗ , ⊤ )

  62. Marty quasigroups as augmented quasigroups ( A, ⋄ , ⋌ , ⋋ ) with hypermagma structures ( A, ⋄ ), ( A, ⋌ ), and ( A, ⋋ ) is a Marty quasigroup iff ∀ x, y, z ∈ A , z ∈ x ⋄ y ⇔ x ∈ z ⋌ y ⇔ y ∈ x ⋋ z . Hypergroup if ⋄ is associative [F. Marty, 1936]. Theorem: Marty quasigroups ≡ augmented quasigroups in ( Rel , ⊗ , ⊤ ). Corollary: Heyting algebra ( A, ∧ , → ), meet semilattice with y ≤ x → z , x ∧ y ≤ z ⇔ x ≤ y → z ⇔ is a Marty quasigroup or augmented quasigroup in ( Rel , ⊗ , ⊤ ) with x ⋄ y = ↑ ( x ∧ y ) , z ⋌ y = ↓ ( y → z ) , x ⋋ z = ↓ ( x → z ).

  63. Multisets as augmented comagmas

  64. Multisets as augmented comagmas For A = N X in ( N , ⊗ , N ), augmented comagma ( A, ∆ , ε ) with diagonal ∆: x → x ⊗ x and augmentation ε : A → N .

  65. Multisets as augmented comagmas For A = N X in ( N , ⊗ , N ), augmented comagma ( A, ∆ , ε ) with diagonal ∆: x → x ⊗ x and augmentation ε : A → N . Set A 0 = { a ∈ A | a ∆ = a ⊗ a and aε ̸ = 0 } of grouplike elements.

  66. Multisets as augmented comagmas For A = N X in ( N , ⊗ , N ), augmented comagma ( A, ∆ , ε ) with diagonal ∆: x → x ⊗ x and augmentation ε : A → N . Set A 0 = { a ∈ A | a ∆ = a ⊗ a and aε ̸ = 0 } of grouplike elements. Augmented comagma ( A, ∆ , ε ) is multisetlike if A = N A 0 .

  67. Multisets as augmented comagmas For A = N X in ( N , ⊗ , N ), augmented comagma ( A, ∆ , ε ) with diagonal ∆: x → x ⊗ x and augmentation ε : A → N . Set A 0 = { a ∈ A | a ∆ = a ⊗ a and aε ̸ = 0 } of grouplike elements. Augmented comagma ( A, ∆ , ε ) is multisetlike if A = N A 0 . [Note: if A ̸ = { 0 } and ε = 0, then ( A, ∆ , ε ) is not multisetlike.]

  68. Multisets as augmented comagmas For A = N X in ( N , ⊗ , N ), augmented comagma ( A, ∆ , ε ) with diagonal ∆: x → x ⊗ x and augmentation ε : A → N . Set A 0 = { a ∈ A | a ∆ = a ⊗ a and aε ̸ = 0 } of grouplike elements. Augmented comagma ( A, ∆ , ε ) is multisetlike if A = N A 0 . [Note: if A ̸ = { 0 } and ε = 0, then ( A, ∆ , ε ) is not multisetlike.] Then have multiset ε : X → N + ; x �→ w ( x ),

  69. Multisets as augmented comagmas For A = N X in ( N , ⊗ , N ), augmented comagma ( A, ∆ , ε ) with diagonal ∆: x → x ⊗ x and augmentation ε : A → N . Set A 0 = { a ∈ A | a ∆ = a ⊗ a and aε ̸ = 0 } of grouplike elements. Augmented comagma ( A, ∆ , ε ) is multisetlike if A = N A 0 . [Note: if A ̸ = { 0 } and ε = 0, then ( A, ∆ , ε ) is not multisetlike.] Then have multiset ε : X → N + ; x �→ w ( x ), setlike if ε : X → { 1 } .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend