hopf categories
play

Hopf Categories Eliezer Batista, Stefaan Caenepeel, Timmy Fieremans, - PowerPoint PPT Presentation

Hopf Categories Eliezer Batista, Stefaan Caenepeel, Timmy Fieremans, Joost Vercruysse Ponta Delgada, July 9, 2018 Enriched category theory V = ( V , , k ) is a strict monoidal category, X is a class. New monoidal category ( V ( X ) , , J


  1. Hopf Categories Eliezer Batista, Stefaan Caenepeel, Timmy Fieremans, Joost Vercruysse Ponta Delgada, July 9, 2018

  2. Enriched category theory V = ( V , ⊗ , k ) is a strict monoidal category, X is a class. New monoidal category ( V ( X ) , • , J ) ◮ An object is a family of objects M in V indexed by X × X : M = ( M x , y ) x , y ∈ X . ◮ morphism ϕ : M → N : family of morphisms ϕ x , y : M x , y → N x , y ◮ ( M • N ) x , y = M x , y ⊗ N x , y , J x , y = ke x , y functor ( − ) op : V ( X ) → V ( X ): V op y , x = V x , y , ϕ op y , x = ϕ x , y .

  3. Enriched category theory V -category A ◮ class X ◮ multiplication morphisms m = m x , y , z : A x , y ⊗ A y , z → A x , z ◮ unit morphisms η x : J x , x = ke x , x → A x , x with unit and associativity conditions. J is a V -category. ◮ ( V , ⊗ , k ) = ( Sets , × , {∗} ): ordinary categories ◮ ( V , ⊗ , k ) = ( M k , ⊗ , k ): k -linear categories

  4. Enriched category theory ◮ If V is braided: tensor product in V ( X ) of two V -categories is again a V -category. ◮ Fix a class X : V - X -categories; V - X -functor is functor that is the identity on objects.

  5. Semi-Hopf categories Assume that V is braided. C ( V ) is the category of coalgebras in V . We consider C ( V )-categories, aka semi-Hopf V -categories. Description Coalgebra in V ( X ) is a family of coalgebras ( C x , y ). Structure maps: ∆ x , y : C x , y → C x , y ⊗ C x , y and ε x , y : C x , y → J x , y = ke x , y

  6. Semi-Hopf categories Proposition A semi-Hopf V -category with underlying class X consists of A ∈ V ( X ) which is ◮ a V -category ◮ a coalgebra in V ( X ) ◮ the morphisms ∆ x , y and ε x , y define V -X-functors ∆ : A → A • A and ε : A → J. C ( V )-categories with one object correspond to bialgebras in V

  7. op and cop op If A is a V -category, then A op is also a V -category: multiplication morphisms m op x , y , z = m z , y , x ◦ c A y , x , A x , y : A op x , y ⊗ A op y , z = A y , x ⊗ A z , y → A op x , z = A z , x and unit morphisms η op = η x . x If A is a C ( V )-category, then A op is also a C ( V )-category, with coalgebra structure maps ∆ op x , y = ∆ y , x and ε op x , y = ε y , x . cop Let C be a coalgebra in V ( X ). The coopposite coalgebra C cop is equal to C as an object of V ( X ), with comultiplication maps ∆ cop x , y = c C x , y , C x , y ◦ ∆ x , y : C x , y → C x , y ⊗ C x , y , and counit maps ε x , y . If A is a C ( V )-category, then A cop is also a C ( V )-category; the V -category structures on A and A cop coincide.

  8. Hopf categories Definition A Hopf V -category is a semi-Hopf V -category A together with a morphism S : A → A op in V ( X ) ( S x , y : A x , y → A y , x ) such that m x , y , x ◦ ( A x , y ⊗ S x , y ) ◦ ∆ x , y = η x ◦ ε x , y : A x , y → A x , x ; m y , x , y ◦ ( S x , y ⊗ A x , y ) ◦ ∆ x , y = η y ◦ ε x , y : A x , y → A y , y , for all x , y ∈ X . Over M k : for h ∈ A x , y : h (1) S x , y ( h (2) ) = ε x , y ( h )1 x ; S x , y ( h (1) ) h (2) = ε x , y ( h )1 y . A Hopf V -category with one object is a Hopf algebra in V .

  9. Hopf-categories and groupoids V = ( Sets , × , {∗} ). Every set is in a unique way a coalgebra in Sets . C ( Sets ) = Sets . C ( Sets )-categories = categories. Proposition A Hopf Sets -category is the same thing as a groupoid (i.e. a category in which all morphisms are isomorphisms).

  10. Hopf-categories: first properties Theorem Let A be a Hopf V -category. The antipode S is a morphism of C ( V ) -categories H → H opcop . Proposition Let A be a k-linear Hopf category. For x , y ∈ X, the following assertions are equivalent. 1. S x , y ( h (2) ) h (1) = ε x , y ( h )1 y , for all h ∈ A x , y ; 2. h (2) S x , y ( h (1) ) = ε x , y ( h )1 x , for all h ∈ A x , y ; 3. S y , x ◦ S x , y = A x , y .

  11. Hopf-categories: first properties Let A and B be Hopf V -categories. A C ( V )-functor f : A → B is called a Hopf V -functor if S B f ( x ) , f ( y ) ◦ f x , y = f y , x ◦ S A x , y , (1) for all x , y ∈ X . Proposition Let A and B be Hopf V -categories. If f : A → B is a C ( V ) -functor, then it is also a Hopf V -functor.

  12. The representation category Let A be a V -category. A left A -module is an object M in V ( X ) together with a family of morphisms in V ψ = ψ x , y , z : A x , y ⊗ M y , z → M x , z + associativity and unit conditions. A morphism ϕ : M → N in V ( X ) between left A -modules is called left A -linear if ϕ x , z ◦ ψ x , y , z = ψ x , y , z ◦ ( A x , y ⊗ ϕ y , z ) Category: A V ( X )

  13. The representation category Proposition Let A be a C ( V ) -category. Then there is a monoidal structure on A V ( X ) such that the forgetful functor A V ( X ) → V ( X ) is monoidal. Bewijs. (in case V = M k ). We need actions A x , y ⊗ M y , z ⊗ N y , z → M x , z ⊗ N x , z and A x , y ⊗ ke y , z → ke x , z . Take a · ( m ⊗ n ) = a (1) m ⊗ a (2) n and a · 1 = ε ( a ) .

  14. Duality: V -opcategories

  15. Hopf categories and Hopf group (co)algebras

  16. Hopf categories and weak Hopf algebras Proposition Let A be a k-linear Hopf category, with | A | = X a finite set. Then A = ⊕ x , y ∈ X A x , y is a weak Hopf algebra. Example Take a groupoid with finitely many objects; apply the linearization functor to obtain a k -linear Hopf category; in packed form it becomes the groupoid algebra, which is well-known to be a weak Hopf algebra. Proposition Let C be a k-linear Hopf opcategory, with | C | = X a finite set. Then C = ⊕ x , y ∈ X C x , y is a weak Hopf algebra.

  17. Hopf categories and duoidal categories ◮ M. Aguiar, S. Mahajan, “Monoidal functors, species and Hopf algebras”, CRM Monogr. ser. 29 , Amer. Math. Soc. Providence, RI, (2010). ◮ G. B¨ ohm, Y. Chen, L. Zhang, “On Hopf monoids in duoidal categories”, J. Algebra 394 (2013), 139-172.

  18. Hopf categories and duoidal categories Definition A duoidal category is a category M with ◮ monoidal structure ( ⊙ , I ) ◮ monoidal structure ( • , J ) ◮ δ : I → I • I ◮ ̟ : J ⊙ J → J ◮ τ : I → J ◮ ζ A , B , C , D : ( A • B ) ⊙ ( C • D ) → ( A ⊙ C ) • ( B ⊙ D ) ◮ ( J , ̟, τ ) is an algebra in ( M , ⊙ , I ) ◮ ( I , δ, τ ) is a coalgebra in ( M , • , J ) ◮ 6 more commutative diagrams (2 associativity and 4 unit)

  19. Hopf categories and duoidal categories Let X be a set. ( M k ( X ) , • , J ) is a monoidal category. Second monomial structure: ( M ⊙ N ) x , z = ⊕ y ∈ X M x , y ⊗ N y , z . � ke x , x if x = y I x , y = 0 if x � = y ◮ τ : I → J : natural inclusion ◮ δ : I → I • I = I : identity map ◮ ( J ⊙ J ) x , y = ⊕ z ∈ X ke x , z ⊗ ke z , y = ⊕ z ∈ X kze x , y = kXe x , y . ̟ : J ⊙ J → J ̟ x , y : ⊕ z ∈ X kze x , y → ke x , y ̟ x , y ( � z ∈ X α z ze x , y ) = � z ∈ X α z e x , y .

  20. Hopf categories and duoidal categories � (( M • N ) ⊙ ( P • Q )) x , y = M x , z ⊗ N x , z ⊗ P z , y ⊗ Q z , y ; z ∈ X � (( M ⊙ P ) • ( N ⊙ Q )) x , y = M x , u ⊗ P u , y ⊗ N x , v ⊗ Q v , y , u , v ∈ X ζ M , N , P , Q , x , y is the map switching the second and third tensor factor, followed by the natural inclusion. Theorem Let X be a set. ( M k ( X ) , ⊙ , I , • , J , δ, ̟, τ, ζ ) is a duoidal category.

  21. Hopf categories and duoidal categories Definition Let ( M , ⊙ , I , • , J , δ, ̟, τ, ζ ) be a duoidal category. A bimonoid is an object A , together with an algebra structure ( µ, η ) in ( M , ⊙ , I ) and a coalgebra structure (∆ , ε ) in ( M , • , J ) subject to the compatibility conditions ∆ ◦ µ = ( µ • µ ) ◦ ζ ◦ (∆ ⊙ ∆); ̟ ◦ ( ε ⊙ ε ) = ε ◦ µ ; ( η • η ) ◦ δ = ∆ ◦ η ; ε ◦ η = τ.

  22. Hopf categories and duoidal categories Theorem Let X be a set, and let A ∈ M k ( X ) . We have a bijective correspondence between bimonoid structures on A over the duoidal category ( M k ( X ) , ⊙ , I , • , J , δ, ̟, τ, ζ ) from and k-linear semi-Hopf category structures on A.

  23. Hopf modules Definition A is a k -linear semi-Hopf category. A Hopf module over A is M ∈ M k ( X ) such that ◮ M ∈ M k ( X ) A , with structure maps ψ x , y , z ◮ M ∈ M k ( X ) A : M is a right comodule over A as a coalgebra in M k ( X ), with structure maps ρ x , y ◮ ρ x , z ( ma ) = m [0] a (1) ⊗ m [1] a (2) Category of Hopf modules: M k ( X ) A A . New category: D ( X ) consisting of families of k -modules N = ( N x ) x ∈ X indexed by X .

  24. An adjoint pair of functors Proposition We have a pair of adjoint functors ( F , G ) between the categories D ( X ) and M k ( X ) A A . Bewijs. F ( N ) x , y = N x ⊗ A x , y , with ( n ⊗ a ) b = n ⊗ ab ; ρ x , y ( n ⊗ a ) = n ⊗ a (1) ⊗ a (2) , G ( M ) = M co A ∈ D ( X ) is given by the formula = M co A x , x M co A = { m ∈ M x , x | ρ x , x ( m ) = m ⊗ 1 x } . x , x x

  25. The fundamental theorem Canonical maps: can z can z x , y : A z , x ⊗ A x , y → A z , y ⊗ A x , y , x , y ( a ⊗ b ) = ab (1) ⊗ b (2) . Theorem For a k-linear semi-Hopf category A with underlying class X, the following assertions are equivalent. 1. A is a k-linear Hopf category; 2. the pair of adjoint functors ( F , G ) is a pair of inverse equivalences between the categories D ( X ) and M k ( X ) A A ; 3. the functor G is fully faithful; 4. can z x , y is an isomorphism, for all x , y , z ∈ X; x , y and can y 5. can x x , y are isomorphisms, for all x , y ∈ X.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend