hopf monoids in duoidal categories gabriella b ohm
play

Hopf monoids in duoidal categories Gabriella B ohm Wigner Research - PowerPoint PPT Presentation

Hopf monoids in duoidal categories Gabriella B ohm Wigner Research Centre for Physics Category Theory 2015, Aveiro 16th of June Plan 1. What distinguishes groups among monoids ? 2. A universal approach: bimonoids in duoidal categories


  1. Hopf monoids in duoidal categories Gabriella B¨ ohm Wigner Research Centre for Physics Category Theory 2015, Aveiro 16th of June

  2. Plan 1. ¿ What distinguishes groups among monoids ? 2. A universal approach: bimonoids in duoidal categories 3. Hopf-like conditions 4. Relations between them Based on the works GB, Y.Y. Chen, L.Y. Zhang, On Hopf monoids in duoidal categories , GB, S. Lack, Hopf comonads on naturally Frobenius map-monoidales .

  3. Plan . 1. ¿ What distinguishes groups among monoids ? . . . and groupoids categories (weak) Hopf algebras (weak) bialgebras Hopf algebroids bialgebroids Hopf monads bimonads . . . and so on . . . (weak) bialgebras ? Based on the works GB, Y.Y. Chen, L.Y. Zhang, On Hopf monoids in duoidal categories , GB, S. Lack, Hopf comonads on naturally Frobenius map-monoidales .

  4. Plan 1. ¿ What distinguishes groups among monoids ? . . . and groupoids categories (weak) Hopf algebras (weak) bialgebras Hopf algebroids bialgebroids Hopf monads bimonads . . . and so on . . . (weak) bialgebras ? 2. A universal approach: bimonoids in duoidal categories 3. Hopf-like conditions 4. Relations between them Based on the works GB, Y.Y. Chen, L.Y. Zhang, On Hopf monoids in duoidal categories , GB, S. Lack, Hopf comonads on naturally Frobenius map-monoidales .

  5. Plan 1. ¿ What distinguishes groups among monoids ? . . . and groupoids categories (weak) Hopf algebras (weak) bialgebras Hopf algebroids bialgebroids Hopf monads bimonads . . . and so on . . . (weak) bialgebras ? 2. A universal approach: bimonoids in duoidal categories 3. Hopf-like conditions 4. Relations between them Based on the works GB, Y.Y. Chen, L.Y. Zhang, On Hopf monoids in duoidal categories , GB, S. Lack, Hopf comonads on naturally Frobenius map-monoidales .

  6. 1. ¿What distinguishes groups among monoids? — and questions of similar flavour

  7. � � � ¿ What distinguishes groups among monoids ? ⇔ every element of C is invertible ⇔ ⇔ the Hopf map the C × C → C × C , ( a , b ) �→ ( a , ab ) is invertible ⇔ the dual Hopf map the C × C → C × C , ( a , b ) �→ ( ab , b ) is invertible ⇔ for any C -set M (i.e. module over the monoid C in set), the Galois morphism the M × C → M × C , ( m , b ) �→ ( mb , b ) is invertible ⇔ for any map (of sets) f : N → C , the dual Galois morphism the C × N → C × N , ( a , n ) �→ ( af ( n ) , n ) is invertible C -set / C ⇔ the comparison functor ( − ) × C the ( − ) × C : set → C -set / C is an equivalence forgetful set C -set ( − ) × C

  8. � � � � � � � � � � � � � ¿ What distinguishes groupoids among categories ? ⇔ every arrow of C is invertible ⇔ ⇔ the Hopf map a b a a b the C s × t C → C t × t C , ( z ) �→ ( z y , y x y , z y x ) is invertible ⇔ the dual Hopf map a b a b b the C s × t C → C s × s C , ( z y , y x ) �→ ( z y x , y x ) is invertible ⇔ for any C -span M (i.e. module over the monoid C in Span( C 0 , C 0 )), the Galois morphism the M s × t C → M s × s C , ( m , b ) �→ ( mb , b ) is invertible ⇔ for any morphism f : N → C of spans, the dual Galois morphism C -span / C the C s × t N → C s × s N , ( a , n ) �→ ( af ( n ) , n ) is invertible ⇔ the comparison functor forgetful the ( − ) • × t C : set / C 0 → C -span / C is an equivalence C -span span ( − ) • × t C

  9. � � � � � � � � � ¿ . . . and bialgebras among Hopf algebras ? bialgebra over a field k (more precisely a bit later) = µ � A η δ ε � k ) in vec compatible monoid ( A 2 ) and comonoid ( A 2 k A ⇔ ∃ an antipode A σ � A – a ‘convolution inverse’ of A 1 � A : A 2 � A 2 A δ σ 1 ε µ δ � k η A 2 � A 2 � A µ 1 σ 1 µ � A 2 δ 1 � A 3 ⇔ the Hopf map A 2 is invertible µ 1 � A 2 1 δ � A 3 ⇔ the dual Hopf map A 2 is invertible ξ � X , the Galois map XA 1 δ � XA 2 ξ 1 � XA ⇔ for any module XA is invertible ζ � AZ , the dual Galois map AZ 1 ζ � A 2 Z µ 1 � AZ ⇔ for any comodule Z is invertible ⇔ the Fundamental thm of Hopf modules holds: hopf( A ) ( − ) A : vec → hopf( A ) is an equivalence ( − ) A forgetful (where the objects of hopf( A ) are compatible vec mod( A ) ( − ) A A modules and comodules)

  10. . . . and so on . . .

  11. 2. A universal approach: bimonoids in duoidal categories

  12. � Duoidal category Definition [Aguiar-Mahajan]. A duoidal category consists of ◮ monoidal categories ( C , • , j ), ( C , ◦ , i ), ξ 0 � j ◦ j , ξ 0 ξ 0 � i 0 ◮ morphisms i • i j ξ � ( w • y ) ◦ ( x • z ) natural in w , x , y , z , ◮ morphisms ( w ◦ x ) • ( y ◦ z ) subject to coherence axioms: ◮ ( ◦ , ξ, ξ 0 ) is a • -monoidal functor and ∼ ∼ ∼ = = = ◮ ( x ◦ y ) ◦ z → x ◦ ( y ◦ z ), x ◦ i → x ← i ◦ x are • -monoidal equivalently, ◮ ( • , ξ, ξ 0 ) is a ◦ -opmonoidal functor and ∼ ∼ ∼ = = = ◮ ( x • y ) • z → x • ( y • z ), x • j → x ← j • x are ◦ -opmonoidal.

  13. � � � � � � � � � Bimonoid In a duoidal category, . the monoidal structure ( ◦ , i ) lifts to the category of ( • , j )-monoids . the monoidal structure ( • , j ) lifts to the category of ( ◦ , i )-comonoids. Definition [Aguiar-Mahajan]. A bimonoid is . a comonoid in the category of ( • , j )-monoids, ⇔ a monoid in the category of ( ◦ , i )-comonoids. . Explicitly, µ η ◮ a monoid ( a • a → a ← j ) δ ε ◮ a comonoid ( a ◦ a ← a → i ) for which ξ 0 � µ µ � δ � a ◦ a a • a . a • a j ◦ j a a j j ξ 0 µ ◦ µ δ • δ ε • ε ε 0 η η ◦ η η � ( a • a ) ◦ 2 � i δ � a ◦ a ε � i ( a ◦ a ) • 2 i • i a a ξ ξ 0

  14. 0th example: braided monoidal categories any braided monoidal category ( C , ⊗ , k , τ ) is duoidal: A ◦ B := A ⊗ B , i = k A • B := A ⊗ B , j = k 1 ⊗ τ ⊗ 1 � A ⊗ C ⊗ B ⊗ D A ⊗ B ⊗ C ⊗ D . ξ : ( A ◦ B ) • ( C ◦ D ) ( A • C ) ◦ ( B • D ) bimonoid = usual bimonoid in a braided monoidal category .

  15. � � � � � 1st example: span( X ) [Aguiar-Mahajan] t s � X objects: maps (of sets) X A A s � t morphisms: . X X f t ′ A ′ s ′ duoidal: A ◦ B := A s , t × s , t B , i = X × X (the categorical product) A • B := A s × t B , j = X � a � � c � a c ← ← �→ ( ← ← ) ξ : b d b d ← ← ( ← ← ) . (comonoids are trivial) bimonoid = monoid = small category with object set X

  16. 2nd example: vec X × X [Batista – Caenepeel – Vercruysse] the category of X × X -graded vector spaces over a field k , for a set X duoidal: ( V • W ) x , y := V x , y ⊗ W x , y j x , y = k ( V ◦ W ) x , y := � z ∈ X V x , z ⊗ W z , y i x , y = δ x , y k ξ : ( v • w ) ◦ ( v ′ • w ′ ) �→ ( v ◦ v ′ ) • ( w ◦ w ′ ) bimonoid = category enriched in the category of comonoids in vec — when X is a group, this includes semi-Hopf group coalgebras [Turaev]

  17. 3rd example: bim( R ) [Aguiar-Mahajan] the category of bimodules over a commutative algebra R duoidal: M ◦ N = M ⊗ R N ≡ M ⊗ N / { m · r ⊗ n − m ⊗ r · n } i = R M • N = M ⊗ R ⊗ R N ≡ M ⊗ N / { r · m · r ′ ⊗ n − m ⊗ r · n · r ′ } j = R ⊗ R ξ : ( m • n ) ◦ ( m ′ • n ′ ) �→ ( m ◦ m ′ ) • ( n ◦ n ′ ) bimonoid = R -bialgebroid (with 1 · r and r · 1 central elements, ∀ r ∈ R ) . [Takeuchi, Lu, Ravenel]

  18. 4th example: bim( R op ⊗ R ) [GB – G´ omez-Torrecillas – L´ opez-Centella] the category of R op ⊗ R -bimodules i e i ⊗ f i ∈ R ⊗ R , ψ : R → k ) – for a separable Frobenius k -algebra ( R , � duoidal: M • N = M ⊗ R op ⊗ R N ≡ M ⊗ N / { m · ( r ⊗ s ) ⊗ n − m ⊗ ( r ⊗ s ) · n } duoidal: j = R op ⊗ R (with the regular actions) duoidal: M ◦ N = M ⊗ R op ⊗ R N — wrt some twisted actions duoidal: i = R op ⊗ R (with some twisted actions) duoidal: ξ : ( m • n ) ◦ ( m ′ • n ′ ) �→ � i ( m · ( e i ⊗ 1) ◦ m ′ ) • ( n ◦ (1 ⊗ f i ) · n ′ ) bimonoid= weak bialgebra with base algebra R

  19. 4th example: bim( R op ⊗ R ) Definition . A separable Frobenius structure on a k -algebra R consists of ◮ a linear map ψ : R → k i e i ⊗ f i of R ⊗ R (that is, a linear map k → R ⊗ R ) ◮ an element � such that for all r ∈ R , i ψ ( re i ) f i = r = e i ψ ( f i r ) i e i f i = 1 � � and (triangle identities of a duality R ⊣ R in vec). ◮ it can be formulated in any monoidal category instead of vec ◮ it has several equivalent reformulations [Street] ◮ it has a number of nice properties (cf. ‘twisted actions’)

  20. 5th example: prof( M ) the category of functors M op × M → set – for a monoidal category ( M , ⊗ , I ) duoidal via the coends � p ∈ Ob( M ) F ( − , p ) × G ( p , − ) F ◦ G = (composition if writing prof( M ) ∼ = CoCont([ M op , set] , [ M op , set])) F ◦ G i = M ( − , − ) � p , q , r , s ∈ Ob( M ) M ( − , p ⊗ q ) × F ( p , r ) × G ( q , s ) × M ( r ⊗ s , − ) F • G = F ◦ G (a convolution formula) j = M ( − , I ) × M ( I , − ). T bimonoids are induced e.g. by monoidal comonads M → M as M ( − , T ( − )).

  21. 3. Hopf like conditions

  22. For a bimonoid in a (good enough) duoidal category: Hopf map antipode dual Galois maps dual FTHM dual Hopf map Galois maps FTHM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend