skew monoidal structures on categories of algebras
play

Skew monoidal structures on categories of algebras Marcelo Fiore and - PowerPoint PPT Presentation

Skew monoidal structures on categories of algebras Marcelo Fiore and Philip Saville University of Cambridge Department of Computer Science and Technology 10th July 2018 1 / 29 Skew monoidal categories A version of monoidal categories


  1. Skew monoidal structures on categories of algebras Marcelo Fiore and Philip Saville University of Cambridge Department of Computer Science and Technology 10th July 2018 1 / 29

  2. Skew monoidal categories A version of monoidal categories (Szlachányi (2012)) Structural transformations need not be invertible: α : p A b B q b C Ñ A b p B b C q λ : I b A Ñ A ρ : A Ñ A b I 2 / 29

  3. Skew monoidal categories A version of monoidal categories (Szlachányi (2012)) Structural transformations need not be invertible: α : p A b B q b C Ñ A b p B b C q λ : I b A Ñ A ρ : A Ñ A b I Example § For C with coproducts, p X { C q with a b inl a ` b p X Ý Ñ A q ‘ p X Ñ B q : “ X Ý Ý Ñ X ` X Ý Ý Ñ A ` B § For C cocomplete, r J , C s with unit J and tensor ` ˘ F ‹ G : “ p lan J F q ˝ G Altenkirch et al. (2010) . 2 / 29

  4. Skew monoidal categories A version of monoidal categories (Szlachányi (2012)) Structural transformations need not be invertible: α : p A b B q b C Ñ A b p B b C q λ : I b A Ñ A ρ : A Ñ A b I Recently studied very actively ( list not exhaustive! ): Coherence properties: Lack & Street (2014), Andrianopoulos (2017), Bourke (2017), Uustalu (2017, 2018), . . . Extensions, theory and examples: Street (2013), Campbell (2018), . . . 2 / 29

  5. Past work Linton (’69), Kock (’71a, ’71b), Guitart (’80), Jacobs (’94), Seal (’13), . . . C monoidal T a monoidal monad C T monoidal ñ reflexive coequalizers in C + preservation conditions 3 / 29

  6. Past work Linton (’69), Kock (’71a, ’71b), Guitart (’80), Jacobs (’94), Seal (’13), . . . C monoidal T a monoidal monad C T monoidal ñ reflexive coequalizers in C + preservation conditions This work C T skew C skew monoidal monoidal T a strong monad ñ reflexive coequalizers in C + preservation conditions 3 / 29

  7. Past work Linton (’69), Kock (’71a, ’71b), Guitart (’80), Jacobs (’94), Seal (’13), . . . C monoidal T a monoidal monad C T monoidal ñ reflexive coequalizers in C + preservation conditions This work C T skew C skew monoidal monoidal T a strong monad ñ monoids are reflexive coequalizers in C + T -monoids preservation conditions 3 / 29

  8. Monoidal case ( C , T monoidal) Definition (Kock (1971)) For p A , a q , p B , b q , p C , c q P C T a map h : A b B Ñ C in C is bilinear if it is linear in each argument: T p A qb η Th κ T p A q b B T p A q b T p B q T p A b B q TC c a b B A b B C h η b T p B q Th κ A b T p B q T p A q b T p B q T p A b B q TC c A b b A b B C h 4 / 29

  9. Monoidal case ( C , T monoidal) Aim Construct p´q ‹ p“q : C T ˆ C T Ñ C T satisfying 1. C T p A ‹ B , C q – Bilin C p A , B ; C q 2. A suitable preservation property to guarantee coherence 5 / 29

  10. Monoidal case ( C , T monoidal) Aim Construct p´q ‹ p“q : C T ˆ C T Ñ C T satisfying 1. C T p A ‹ B , C q – Bilin C p A , B ; C q 2. A suitable preservation property to guarantee coherence Construction (Linton 1969) Reflexive coequalizer in C T : µ coeq. T κ ` ˘ T 2 p A b B q T T p A q b T p B q T p A b B q A ‹ B T p a b b q NB: U : C T Ñ C creates reflexive coequalizers if T preserves them 5 / 29

  11. Monoidal case ( C , T monoidal) Aim Construct p´q ‹ p“q : C T ˆ C T Ñ C T satisfying 1. C T p A ‹ B , C q – Bilin C p A , B ; C q 2. if every p´q b X and X b p´q preserve reflexive coequalizers, so do p´q ‹ p A , a q and p A , a q ‹ p´q Construction (Linton 1969) Reflexive coequalizer in C T : µ coeq. T κ ` ˘ T 2 p A b B q T T p A q b T p B q T p A b B q A ‹ B T p a b b q NB: U : C T Ñ C creates reflexive coequalizers if T preserves them 5 / 29

  12. Monoidal case ( C , T monoidal) Proposition (Guitart (’80), Seal (’13)) Suppose that § C has all reflexive coequalizers, § T preserves reflexive coequalizers, § Every p´q b X and X b p´q preserves reflexive coequalizers Then p C T , ‹ , TI q is a monoidal category. Other versions are available: e.g. closed, symmetric, cartesian. . . 6 / 29

  13. Skew monoidal case ( C skew monoidal, T strong) Classify left-linear maps Construct an action C T ˆ C Ñ C T Extend to a skew monoidal structure on C T 7 / 29

  14. Skew monoidal case ( C skew monoidal, T strong) Classify left-linear maps Construct an action C T ˆ C Ñ C T Extend to a skew monoidal structure on C T Background assumption : ` ˘ C skew monoidal, T strong st : T p A q b B Ñ T p A b B q 7 / 29

  15. Factoring the proof C closed or α invertible C has reflexive C T has reflexive C has a p 1 , 2 , 3 q -left coequalizers, coequalizers linear classifier which T preserves p´q b X preserves reflexive coeqs. C closed C acts on C T or α invertible or p´q b X preserves reflexive coeqs. C T skew monoidal 8 / 29

  16. Factoring the proof C closed or α invertible C has reflexive C T has reflexive C has a p 1 , 2 , 3 q -left coequalizers, coequalizers linear classifier which T preserves p´q b X preserves reflexive coeqs. C closed C acts on C T or α invertible or p´q b X preserves reflexive coeqs. C T skew monoidal 8 / 29

  17. Left-linear maps Definition ( c.f. Kock (1971)) For p A , a q , p B , b q P C T and P P C , a map h : A b P Ñ C is left linear if st A , B Th T p A q b P T p A b P q TB a b P b A b P B h 9 / 29

  18. Left-linear classifiers Definition ( c.f. Guitart (’80), Jacobs (’94), Seal (’13)) A left-linear classifier is a family of maps σ A , P : A b P Ñ A ‹ P such that 1. p A ‹ P , τ A , P q P C T 2. σ A , B is left-linear, 3. Every left-linear map A b P Ñ B factors uniquely: σ A b P A ‹ P D ! algebra map @ left-linear maps B Determines an isomorphism C T p A ‹ P , B q – LeftLin C p A , P ; B q . 10 / 29

  19. Left-linear classifiers Definition ( c.f. Guitart (’80), Jacobs (’94), Seal (’13)) A left-linear classifier is a family of maps σ A , P : A b P Ñ A ‹ P such that 1. p A ‹ P , τ A , P q P C T 2. σ A , B is left-linear, 3. Every left-linear map A b P Ñ B factors uniquely: σ A b P A ‹ P D ! algebra map @ left-linear maps B Determines an isomorphism C T p A ‹ P , B q – LeftLin C p A , P ; B q . ù Need to build in a preservation property to guarantee coherence 10 / 29

  20. n -left linear maps Definition For p A , a q , p B , b q P C T and P 1 , . . . , P n P C , a map ` ` ˘ ˘ h : ¨ ¨ ¨ p A b P 1 q b P 2 ¨ ¨ ¨ b P n ´ 1 b P n Ñ B is n -left linear if st b n Th T p A q b P 1 b ¨ ¨ ¨ b P n T p A b P 1 b ¨ ¨ ¨ b P n q TB a b P 1 b¨¨¨b P n b A b P 1 b ¨ ¨ ¨ b P n B h where st b 1 : “ st and st bp n ` 1 q : “ st ˝ st b n . 11 / 29

  21. n -left linear maps Definition For p A , a q , p B , b q P C T and P 1 , . . . , P n P C , a map ` ` ˘ ˘ h : ¨ ¨ ¨ p A b P 1 q b P 2 ¨ ¨ ¨ b P n ´ 1 b P n Ñ B is n -left linear if st b n Th T p A q b P 1 b ¨ ¨ ¨ b P n T p A b P 1 b ¨ ¨ ¨ b P n q TB a b P 1 b¨¨¨b P n b A b P 1 b ¨ ¨ ¨ b P n B h where st b 1 : “ st and st bp n ` 1 q : “ st ˝ st b n . ù An n -parameter version of left-linearity. 11 / 29

  22. n -left linear classifiers Definition A n -left linear classifier is a family of maps σ A , P 1 : A b P 1 Ñ A ‹ P 1 such that 1. p A ‹ P 1 , τ A , P 1 q P C T 2. σ A , B is left-linear, ` ` ˘ ˘ 3. Every n -left linear map ¨ ¨ ¨ p A b P 1 q b P 2 ¨ ¨ ¨ b P n Ñ B factors uniquely: σ b P 2 b¨¨¨b P n A b P 1 b ¨ ¨ ¨ b P n p A ‹ P 1 q b P 2 b ¨ ¨ ¨ b P n D ! p n ´ 1 q -left linear map @ n -left linear B A p 1 , . . . , n q -left linear classifier is a 1-left linear classifier that is also an i -left linear classifier (1 ď i ď n ). 12 / 29

  23. n -left linear classifiers Lemma ` ` ˘ ˘ If h : ¨ ¨ ¨ p A b P 1 q b P 2 ¨ ¨ ¨ b P n ` 1 Ñ B is p n ` 1 q -left linear, then (if they exist) 1. The transpose ˜ h : A b P 1 b ¨ ¨ ¨ b P n Ñ r P n ` 1 , B s is n -left linear, 2. h ˝ α ´ 1 : p A b P 1 ¨ ¨ ¨ b P n ´ 1 q b p P n b P n ` 1 q Ñ B is n -left linear Lemma If C has an n -left linear classifier and satisfies either § C is closed, or § α is invertible Then C has an p n ` 1 q -left linear classifier. 12 / 29

  24. Factoring the proof C closed or α invertible C has reflexive C T has reflexive C has a p 1 , 2 , 3 q -left coequalizers, coequalizers linear classifier which T preserves p´q b X preserves ? reflexive coeqs. C closed C acts on C T or α invertible or p´q b X preserves reflexive coeqs. C T skew monoidal 13 / 29

  25. From classifier to action Proposition If C has a p 1 , 2 , 3 q -left linear classifier σ A , B : A b B Ñ A ‹ B , then 1. ‹ : C T ˆ C Ñ C T is a skew action, and 2. The free-forgetful adjunction F : C Ô C T : U is strong. 14 / 29

  26. From classifier to action Proposition If C has a p 1 , 2 , 3 q -left linear classifier σ A , B : A b B Ñ A ‹ B , then 1. ‹ : C T ˆ C Ñ C T is a skew action, and 2. The free-forgetful adjunction F : C Ô C T : U is strong. Holds in particular if C has a 1-left linear classifier and § C is closed, or § α is invertible 14 / 29

  27. Factoring the proof C closed or α invertible C has reflexive C T has reflexive C has a p 1 , 2 , 3 q -left coequalizers, coequalizers linear classifier which T preserves p´q b X preserves reflexive coeqs. C closed C acts on C T or α invertible or ? p´q b X preserves reflexive coeqs. C T skew monoidal 15 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend