hook formulas for skew shapes
play

Hook formulas for skew shapes Greta Panova (University of - PowerPoint PPT Presentation

Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Hook formulas for skew shapes Greta Panova (University of Pennsylvania) joint with Alejandro Morales (UCLA), Igor Pak (UCLA) 78th S eminaire


  1. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Hook formulas for skew shapes Greta Panova (University of Pennsylvania) joint with Alejandro Morales (UCLA), Igor Pak (UCLA) 78th S´ eminaire Lotharingien de combinatoire March 2017 1

  2. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Standard Young Tableaux Irreducible representations of S n : Specht modules S λ , for all λ ⊢ n . Basis for S λ : Standard Young Tableaux of shape λ : λ = (2 , 2 , 1): : 1 2 1 2 1 3 1 3 1 4 3 4 3 5 2 4 2 5 2 5 5 4 5 4 3 Hook-length formula [Frame-Robinson-Thrall]: | λ | ! 5! dim S λ = # { SYTs of shape λ } = f λ = = � u ∈ λ h u 4 ∗ 3 ∗ 2 ∗ 1 ∗ 1               Hook length of box u = ( i , j ) ∈ λ : h u = λ i − j + λ ′ j − i + 1 = # ∈ u             2

  3. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Counting skew SYTs 2 4 Outer shape λ , inner shape µ , e.g. for λ = (5 , 4 , 4 , 2) , µ = (3 , 2 , 1) 1 5 3 6 8 7 9 Jacobi-Trudi [Feit 1953]: � ℓ ( λ ) � 1 f λ/µ = | λ/µ | ! · det . ( λ i − µ j − i + j )! i , j =1 3

  4. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Counting skew SYTs 2 4 Outer shape λ , inner shape µ , e.g. for λ = (5 , 4 , 4 , 2) , µ = (3 , 2 , 1) 1 5 3 6 8 7 9 Jacobi-Trudi [Feit 1953]: � ℓ ( λ ) � 1 f λ/µ = | λ/µ | ! · det . ( λ i − µ j − i + j )! i , j =1 Littlewood-Richardson : f λ/µ = � c λ µ,ν f ν ν 3

  5. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Counting skew SYTs 2 4 Outer shape λ , inner shape µ , e.g. for λ = (5 , 4 , 4 , 2) , µ = (3 , 2 , 1) 1 5 3 6 8 7 9 Jacobi-Trudi [Feit 1953]: � ℓ ( λ ) � 1 f λ/µ = | λ/µ | ! · det . ( λ i − µ j − i + j )! i , j =1 Littlewood-Richardson : f λ/µ = � c λ µ,ν f ν ν f δ n +2 /δ n = E 2 n +1 : No product formula, e.g. λ/µ = δ n +2 /δ n : x 2 x 3 x 4 1 + E 1 x + E 2 2! + E 3 3! + E 4 4! + . . . = sec( x ) + tan( x ) . Euler numbers: 2 , 5 , 16 , 61 .... 3

  6. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Hook-Length formula for skew shapes Theorem (Naruse, SLC, September 2014) 1 f λ/µ = | λ/µ | ! � � h ( u ) , D ∈E ( λ/µ ) u ∈ [ λ ] \ D where E ( λ/µ ) is the set of excited diagrams of λ/µ . Excited diagrams: E ( λ/µ ) = { D ⊂ λ : obtained from µ via } q 3 q 5 q 5 q 7 q 9 � 1 1 1 1 1 � f (4321 / 21) = 7! 1 4 · 3 3 + 1 3 · 3 3 · 5 + 1 3 · 3 3 · 5 + 1 2 · 3 3 · 5 2 + = 61 1 2 · 3 2 · 5 2 · 7 4

  7. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Hook-Length formula for skew shapes q 3 q 5 q 5 q 7 q 9 q 3 q 5 q | T | = s λ/µ (1 , q , q 2 , . . . ) = � (1 − q ) 4 (1 − q 3 ) 3 + 2 × (1 − q ) 3 (1 − q 3 ) 3 (1 − q 5 ) T ∈ SSYT (4321 / 21) q 7 q 9 + (1 − q ) 2 (1 − q 3 ) 3 (1 − q 5 ) 2 + (1 − q ) 2 (1 − q 3 ) 2 (1 − q 5 ) 2 (1 − q 7 ) Theorem (Morales-Pak-P) q λ ′ � j − i � q | T | = � � � . 1 − q h ( i , j ) T ∈ SSYT ( λ/µ ) D ∈E ( λ/µ ) ( i , j ) ∈ [ λ ] \ D Theorem (Morales-Pak-P) � � q h ( u ) q | π | = � � � . 1 − q h ( u ) u ∈ S π ∈ RPP ( λ/µ ) S ∈ PD ( λ/µ ) where PD ( λ/µ ) is the set of pleasant diagrams. Other recent proof by [M. Konvalinka] 4

  8. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Algebraic proof for SSYTs: 6 1 3 [Ikeda-Naruse, Kreiman]: Let w � v be Grassman- y 6 − y 3 5 6 y 6 − y 1 nian permutations whose unique descent is at po- 6 sition d with corresponding partitions µ ⊆ λ ⊆ 4 5 y 5 − y 1 y 5 − y 3 5 d × ( n − d ). Then y 4 − y 1 y 4 − y 3 2 3 4 4 � � � � � [ X w ] v = y v ( d + j ) − y v ( d − i +1) . 1 2 3 y 2 − y 1 � 2 D ∈E ( λ/µ ) ( i , j ) ∈ D 1 v = 245613, w = 361245 5

  9. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Algebraic proof for SSYTs: 6 1 3 [Ikeda-Naruse, Kreiman]: Let w � v be Grassman- y 6 − y 3 5 6 y 6 − y 1 nian permutations whose unique descent is at po- 6 sition d with corresponding partitions µ ⊆ λ ⊆ 4 5 y 5 − y 1 y 5 − y 3 5 d × ( n − d ). Then y 4 − y 1 y 4 − y 3 2 3 4 4 � � � � � [ X w ] v = y v ( d + j ) − y v ( d − i +1) . 1 2 3 y 2 − y 1 � 2 D ∈E ( λ/µ ) ( i , j ) ∈ D 1 v = 245613, w = 361245 Factorial Schur functions: � d det � ( x j − a 1 ) · · · ( x j − a µ i + d − i ) s ( d ) i , j =1 µ ( x | a ) := , � 1 ≤ i < j ≤ d ( x i − x j ) [Knutson-Tao, Lakshmibai–Raghavan–Sankaran] Schubert class at a point: v = ( − 1) ℓ ( w ) s ( d ) � � y v (1) , . . . , y v ( d ) | y 1 , . . . , y n − 1 � [ X w ] . µ � 5

  10. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Algebraic proof for SSYTs: 6 1 3 [Ikeda-Naruse, Kreiman]: Let w � v be Grassman- y 6 − y 3 5 6 y 6 − y 1 nian permutations whose unique descent is at po- 6 sition d with corresponding partitions µ ⊆ λ ⊆ 4 5 y 5 − y 1 y 5 − y 3 5 d × ( n − d ). Then y 4 − y 1 y 4 − y 3 2 3 4 4 � � � � � [ X w ] v = y v ( d + j ) − y v ( d − i +1) . 1 2 3 y 2 − y 1 � 2 D ∈E ( λ/µ ) ( i , j ) ∈ D 1 v = 245613, w = 361245 Factorial Schur functions: � d det � ( x j − a 1 ) · · · ( x j − a µ i + d − i ) s ( d ) i , j =1 µ ( x | a ) := , � 1 ≤ i < j ≤ d ( x i − x j ) [Knutson-Tao, Lakshmibai–Raghavan–Sankaran] Schubert class at a point: v = ( − 1) ℓ ( w ) s ( d ) � � y v (1) , . . . , y v ( d ) | y 1 , . . . , y n − 1 � [ X w ] . µ � Evaluation at y = 1 , q , q 2 , ... , v ( d + 1 − i ) = λ i + d + 1 − i , x i → y v ( i ) = q λ i + d +1 − i → Jacobi-Trudi det[ � µ j + d − j ( q λ i + d +1 − i − q r )] d s ( d ) r =1 i , j =1 µ ( q v (1) , . . . | 1 , q , . . . ) = = .... i < j ( q λ + d +1 − i − q λ j + d +1 − j ) � ... [ simplifications ] ... = det[ h λ i − i − µ j + j (1 , q , . . . )] = s λ/µ (1 , q , . . . ) 5

  11. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Combinatorial proofs: Hillman-Grassl algorithm/map Φ: Reverse Plane Partitions of shape λ to Arrays of shape λ : 0 1 2 → 0 1 2 → 0 0 1 → 0 0 1 → 0 0 1 , 0 0 0 RRP P = 1 1 3 1 1 3 0 0 3 0 0 2 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 → 1 0 0 → 1 0 0 → 1 0 0 → 1 0 1 =: Array A = Φ( P ) 0 0 0 0 0 0 0 0 1 0 0 2 0 0 2 1 1 1 1 1 Weight ( P ) = 0 + 1 + 2 + 1 + 1 + 3 + 2 = 10 = � i , j A i , j hook ( i , j ) = 1 ∗ 5 + 1 ∗ 2 + 2 ∗ 1 + 1 ∗ 1 = weight ( A ) 6

  12. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Combinatorial proofs: Hillman-Grassl algorithm/map Φ: Reverse Plane Partitions of shape λ to Arrays of shape λ : 0 1 2 → 0 1 2 → 0 0 1 → 0 0 1 → 0 0 1 , 0 0 0 RRP P = 1 1 3 1 1 3 0 0 3 0 0 2 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 → 1 0 0 → 1 0 0 → 1 0 0 → 1 0 1 =: Array A = Φ( P ) 0 0 0 0 0 0 0 0 1 0 0 2 0 0 2 1 1 1 1 1 Weight ( P ) = 0 + 1 + 2 + 1 + 1 + 3 + 2 = 10 = � i , j A i , j hook ( i , j ) = 1 ∗ 5 + 1 ∗ 2 + 2 ∗ 1 + 1 ∗ 1 = weight ( A ) 0 0 0 0 0 0 0 0 0 0 0 Φ Φ Φ 1 1 0 1 1 1 0 1 1 1 0 0 2 2 0 0 1 1 2 2 1 0 2 2 1 0 1 1 2 1 1 3 1 1 Theorem (Morales-Pak-P) The restricted Hillman-Grassl map is a bijection to the SSYTs of shape λ/µ to the excited arrays (diagrams in E ( λ/µ ) with nonzero entries on the broken diagonals) . d 1 µ d 1 ( µ ) d 1 ( D ) λ λ λ A ∅ A µ A D 6

  13. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Combinatorial proofs: 0 0 0 0 0 0 0 0 0 0 0 Φ Φ Φ 1 1 0 1 1 1 0 1 1 1 0 0 2 2 0 0 1 1 2 2 1 0 2 2 1 0 1 1 2 1 1 3 1 1 Theorem (Morales-Pak-P) The restricted Hillman-Grassl map is a bijection to the SSYTs of shape λ/µ to the excited arrays (diagrams in E ( λ/µ ) with nonzero entries on the broken diagonals) . d 1 µ d 1 ( µ ) d 1 ( D ) λ λ λ A ∅ A µ A D Proof sketch: Issue: enforce 0s on µ and strict increase down columns on λ/µ . Show Φ − 1 ( A ) is column strict in λ/µ + support in λ/µ via properties of RSK (each diagonal of P is shape of RSK tableau on the corresponding subrectangle of A ) Thus, Φ − 1 is injective: restricted arrays → SSYTs of shape λ/µ . Bijective: use the algebraic identity. 6

  14. Skew HLF Bijections Lattice paths Asymptotics of skew SYTs Multivariate: tilings and beyond Hillman-Grassl on skew RPPs Without the restriction of strictly increasing columns, we have skew reverse plane partitions and a wider class of arrays/diagrams, called pleasant diagrams : PD ( λ/µ ). – supersets of E ( λ/µ ), identified by the “high peaks”. D ∗ = ̺ 1 ( S ) λ/µ S D = ̺ 2 ( S ) 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend