random tilings and random matrices
play

Random tilings and random matrices Alice Guionnet CNRS Ecole - PowerPoint PPT Presentation

Random tilings and random matrices Alice Guionnet CNRS Ecole Normale Sup erieure de Lyon Organigramme de l UMPA au 13 novembre 2017 Directrice de l Unit Gestion - Informatique Equipe Gomtrie Equipe EDP et Equipe


  1. Random tilings and random matrices Alice Guionnet CNRS – ´ Ecole Normale Sup´ erieure de Lyon

  2. Organigramme de l � UMPA au 13 novembre 2017 Directrice de l � Unité Gestion - Informatique Equipe Géométrie Equipe EDP et Equipe Probabilité Equipe Algèbre Secrétariat (3) (3) (19) Applications (7) (11) (15) 2 TCR 1 IR 1 PR 3 PR 1 PR 1 PR 1 MCF 1 TCR CDD 1 IR en CDD 1 PR invité 1 MCF 1 PR invité 1AI à 50% 2 MCF 3 Thésards 1 DR 2 MCF 3 DR 2 CR 1 DR 4 CR 1 Postdoc 3 CR 2 AGPR 1 AGPR 2 AGPR 1 ATER 4 Thésards 5 Thésards 1 Postdoc 4 Thésards 6 PR 6 MC 5 DR 9 CR 2 PR invité 2 IR 1 AI 3 TCR 5 AGPR 1 ATER 2 Postdoc 16 Thésards

  3. Probability Team Gr´ egory Miermont Adrien Kassel Emmanuel Jacob Random planar Combinatorial Random graphs and maps stochastic processes Processes + 1 Post Doc +1 AGPR+ 4 PhD

  4. Random matrices a ij random, N large.   a 11 a 12 a 13 · · · a 1 N a 21 a 22 a 23 a 24 a 2 N    . .  ... . .   A N = . · · · · · · .    . .  ... . .   . · · · · · · .   a N 1 · · · · · · · · · a NN

  5. Random matrices a ij random, N large.   a 11 a 12 a 13 · · · a 1 N a 21 a 22 a 23 a 24 a 2 N    . .  ... . .   A N = . · · · · · · .    . .  ... . .   . · · · · · · .   a N 1 · · · · · · · · · a NN How does the spectrum looks like when N goes to infinity ? What about the eigenvec- tors (localized or not)? Universality ? Non- normal matrices ? relation with operator al- gebra (and free probability) ?

  6. Beta-ensembles When A N is Hermitian and the entries Gaussian, the joint law of the eigenvalues is given by | λ i − λ j | β e − β N � V ( λ i ) � ( λ ) = 1 dQ β, V � d λ i N Z N i < j with β = 1 , 2 , 4 and V = x 2 / 2 .

  7. Beta-ensembles When A N is Hermitian and the entries Gaussian, the joint law of the eigenvalues is given by | λ i − λ j | β e − β N � V ( λ i ) � ( λ ) = 1 dQ β, V � d λ i N Z N i < j with β = 1 , 2 , 4 and V = x 2 / 2 . ◮ (LLN) If V is continuous, going to infinity sufficiently fast, � δ λ i converges towards the equilibrium measure µ V 1 N ◮ (CLT)[Johansson 97, Shcherbina, G-Borot 11] Under more assumptions [cf 1 cut, off-critical], for smooth f , N � � f ( λ i ) − N f ( x ) d µ V ( x ) → N ( m f , σ f ) i =1

  8. Local fluctuations of Beta ensembles How does the spectrum look like when N goes to infinity and we look at detailed information like the behaviour of spacings N ( λ i − λ i − 1 ) or largest eigenvalue max i λ i ? When β = 2, the law Q 2 , V is determinantal: its density is the N square of a determinant � | λ i − λ j | = det( λ i j ) i < j so that its local fluctuations can be analyzed by orthogonal polynomial techniques [Mehta 91’, Tracy-Widom 94’].

  9. Beta-ensembles: local fluctuations at the edge Dumitriu-Edelman 02’: Take V ( x ) = β x 2 / 2. Then Q β,β x 2 / 2 is the N law of the eigenvalues of Y β   ξ 1 0 · · · 0 1 . . Y β   ξ 1 ξ 2 0 .   2 . .  ... ...  H β . . N =   0 . .   .  ... ...  .  0 · · · .    Y β 0 0 · · · ξ N − 1 N where ξ i are iid N (0 , 1) and Y β i ≃ χ i β independent.

  10. Beta-ensembles: local fluctuations at the edge Dumitriu-Edelman 02’: Take V ( x ) = β x 2 / 2. Then Q β,β x 2 / 2 is the N law of the eigenvalues of Y β   ξ 1 0 · · · 0 1 . . Y β   ξ 1 ξ 2 0 .   2 . .  ... ...  H β . . N =   0 . .   .  ... ...  .  0 · · · .    Y β 0 0 · · · ξ N − 1 N where ξ i are iid N (0 , 1) and Y β i ≃ χ i β independent. Ramirez-Rider-Vir` ag 06’: The largest eigenvalue fluctuates like Tracy-Widom β distribution.

  11. Beta-ensembles: local fluctuations at the edge Dumitriu-Edelman 02’: Take V ( x ) = β x 2 / 2. Then Q β,β x 2 / 2 is the N law of the eigenvalues of Y β   ξ 1 0 · · · 0 1 . . Y β   ξ 1 ξ 2 0 .   2 . .  ... ...  H β . . N =   0 . .   .  ... ...  .  0 · · · .    Y β 0 0 · · · ξ N − 1 N where ξ i are iid N (0 , 1) and Y β i ≃ χ i β independent. Ramirez-Rider-Vir` ag 06’: The largest eigenvalue fluctuates like Tracy-Widom β distribution. Bourgade-Erd` os-Yau 11’, Shcherbina 13’, Bekerman-Figalli-G 13’: Universality: This remains true for general potentials provided off-criticality holds.

  12. Random tiling in the hexagon Take a tiling of the hexagon by lozenges uniformly at random The distribution of horizontal tiles ℓ 1 < ℓ 2 < · · · < ℓ N along a vertical line is proportionnal to � | ℓ i − ℓ j | 2 w ( ℓ i ) i < j

  13. Random tiling in domains constructed by gluing trapezoid The distribution of horizontal tiles ℓ 1 < ℓ 2 < · · · < ℓ N along a vertical line is proportionnal to � | ℓ i − ℓ j | θ i , j w ( ℓ i ) i < j with θ i , j ∈ { 0 , 1 , 2 } .

  14. Discrete β -ensembles ( β = 2 θ ) For configurations ℓ such that ℓ i +1 − ℓ i − θ ∈ N , ℓ i ∈ [ aN , bN ] , it is given by: 1 P θ, w � � N ( ℓ ) = I θ ( ℓ j , ℓ i ) w ( ℓ i ) , Z θ, w 1 ≤ i < j ≤ N N where I θ ( ℓ ′ , ℓ ) = Γ( ℓ ′ − ℓ + 1)Γ( ℓ ′ − ℓ + θ ) Γ( ℓ ′ − ℓ )Γ( ℓ ′ − ℓ + 1 − θ ) Note that I θ ( ℓ ′ , ℓ ) ≃ | ℓ ′ − ℓ | 2 θ with = if θ = 1 , 1 / 2.

  15. Discrete β -ensembles ( β = 2 θ ) For configurations ℓ such that ℓ i +1 − ℓ i − θ ∈ N , ℓ i ∈ [ aN , bN ] , it is given by: 1 P θ, w � � N ( ℓ ) = I θ ( ℓ j , ℓ i ) w ( ℓ i ) , Z θ, w 1 ≤ i < j ≤ N N where I θ ( ℓ ′ , ℓ ) = Γ( ℓ ′ − ℓ + 1)Γ( ℓ ′ − ℓ + θ ) Γ( ℓ ′ − ℓ )Γ( ℓ ′ − ℓ + 1 − θ ) Note that I θ ( ℓ ′ , ℓ ) ≃ | ℓ ′ − ℓ | 2 θ with = if θ = 1 , 1 / 2. We can study the convergence, global fluctuations of the empirical measures N µ N = 1 � ˆ δ ℓ i / N N i =1 and fluctuations of the extreme particles of the liquid region [Borodin, Borot, Gorin, G., Huang]

  16. Convergence of the empirical measure For configurations ℓ such that ℓ i +1 − ℓ i − θ ∈ N , ℓ i ∈ [ aN , bN ] , 1 P θ, w � � N ( ℓ ) = I θ ( ℓ j , ℓ i ) w ( ℓ i ) , Z θ, w N 1 ≤ i < j ≤ N Theorem Assume that w ( ℓ ) ≃ e − NV ( ℓ/ N ) with V continuous on [ a , b ] . Then µ N = 1 � N ˆ i =1 δ ℓ i / N converges almost surely towards µ V which N minimizes � � � E ( µ ) = V ( x ) d µ ( x ) − θ ln | x − y | d µ ( x ) d µ ( y ) over probability measures with density bounded by 1 /θ .

  17. Convergence of the empirical measure For configurations ℓ such that ℓ i +1 − ℓ i − θ ∈ N , ℓ i ∈ [ aN , bN ] , 1 P θ, w � � N ( ℓ ) = I θ ( ℓ j , ℓ i ) w ( ℓ i ) , Z θ, w N 1 ≤ i < j ≤ N Theorem Assume that w ( ℓ ) ≃ e − NV ( ℓ/ N ) with V continuous on [ a , b ] . Then µ N = 1 � N ˆ i =1 δ ℓ i / N converges almost surely towards µ V which N minimizes � � � E ( µ ) = V ( x ) d µ ( x ) − θ ln | x − y | d µ ( x ) d µ ( y ) over probability measures with density bounded by 1 /θ . Proof 1 P θ, w e − N 2 E (ˆ µ N ) , N ( ℓ ) ≃ θ # { i : ℓ i / N ∈ [ α, β ] } ≤ N ( β − α )+1 Z θ, w N

  18. Fluctuations of the largest particles For configurations ℓ such that ℓ i +1 − ℓ i − θ ∈ N , ℓ i ∈ [ aN , bN ] , 1 P θ, w � � N ( ℓ ) = I θ ( ℓ j , ℓ i ) w ( ℓ i ) , Z θ, w 1 ≤ i < j ≤ N N Theorem (Huang-G 17’) Under technical assumptions [one cut, off-criticality, analyticity], the largest particle ℓ N fluctuates according to the Tracy-Widom 2 θ distribution: � � N →∞ P θ, w N − 1 / 3 ( ℓ N − N β ) ≥ t lim = F 2 θ ( t ) N if β = min { t : µ V (( −∞ , t )) } = 1 .

  19. Idea of the proof ◮ Rigidity (cf Erdos, Schlein, Yau 06’): for any a > 0 N a P θ, w min { i / N , 1 − i / N } 1 / 3 ) ≤ e − (log N ) 2 N (sup | ℓ i − N γ i | ≥ i where µ V (( −∞ , γ i )) = i / N .

  20. Idea of the proof ◮ Rigidity (cf Erdos, Schlein, Yau 06’): for any a > 0 N a P θ, w min { i / N , 1 − i / N } 1 / 3 ) ≤ e − (log N ) 2 N (sup | ℓ i − N γ i | ≥ i where µ V (( −∞ , γ i )) = i / N . ◮ One can compare the law of the extreme particles, at distance of order N 1 / 3 ≫ 1 (the mesh of the tiling) with the law of the extreme particles for the continuous model and deduce the 2 θ - Tracy-Widom fluctuations.

  21. Rigidity and Nekrasov equations ◮ Rigidity is obtained by proving that the Stieljes transform N G N ( z ) = 1 1 � N z − ℓ i / N i =1 is close to its deterministic limit for ℑ z ≥ N − 1+ δ . This is enough to show that the number of particles in an interval I of size N − 1+2 δ is approximately N µ V ( I ). ◮ Estimating the Stieljes equations is done thanks to the analysis of equations, analogous to loop or Dyson-Schwinger equations, derived by Nekrasov for the correlators (all moments of G N ), concentration of measures, and multiscale analysis.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend