a matrix model for counting plane partitions and tilings
play

A matrix model for counting plane partitions and tilings Bertrand - PowerPoint PPT Presentation

A matrix model for counting plane partitions and tilings Bertrand Eynard, IPHT CEA-SACLAY STATCOMB, Dimer models and random tilings, oct. 2009 " ! B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings Introduction B. Eynard,


  1. A matrix model for counting plane partitions and tilings Bertrand Eynard, IPHT CEA-SACLAY STATCOMB, Dimer models and random tilings, oct. 2009 " ! µ B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  2. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  3. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  4. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  5. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  6. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  7. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  8. Introduction B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  9. Introduction cusp: Pearcey edge: Airy tangent edge: Hermit bulk: sine In all those limits: statistics of cubes ∼ random matrix eigenvalues statistics. B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  10. Introduction cusp: Pearcey edge: Airy tangent edge: Hermit bulk: sine Question: is there a matrix model whose eigenvalues statistics = statistics of cubes ? before any limit ? B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  11. Outline Outline: Plane partitions, tilings and TASEP Rewriting as a matrix integral Tools available for matrix models Orthogonal polynomials, determinantal formulae, integrability, loop equations. topological expansion of the matrix model Large size asymptotics, liquid region. Examples Tiling the hexagon, the cardioid, TSSCPPs. Conclusion B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  12. Plane partitions • Plane partition, with 3 given boundaries λ, µ, ν : Left Right N N ! µ " N ! " µ B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  13. Plane partitions • Plane partition, with 3 given boundaries λ, µ, ν : Left Right N N ! µ " N ! " µ B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  14. Plane partitions • Plane partition, with 3 given boundaries λ, µ, ν : Left Right N N ! µ " N ! " µ B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  15. Plane partitions • Plane partition, with 3 given boundaries λ, µ, ν : t " ! ! = N self avoiding particles moving in a given region of the Rhombus lattice. B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  16. Plane partitions • Plane partition, with 3 given boundaries λ, µ, ν : t ! h 7 h 6 h 5 h 4 h 3 h 2 " µ h 1 h = N self avoiding particles moving in a given region of the Rhombus lattice. h i ( t ) , i = 1 , . . . , N , h i ( t ) − t h i ( t + 1 ) = h i ( t ) ± 1 2 ∈ Z , 2 , h 1 ( t ) > h 2 ( t ) > h 3 ( t ) > · · · > h N ( t ) . B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  17. Generalization N self avoiding particles moving in a given arbitrary domain D of the Rhombus lattice. h i ( t ) , i = 1 , . . . , N , h i ( t ) − t 2 ∈ Z , h 1 ( t ) > h 2 ( t ) > h 3 ( t ) > · · · > h N ( t ) , h i ( t + 1 ) = h i ( t ) + 1 2 with proba α ( t + 1 2 ) h i ( t + 1 ) = h i ( t ) − 1 2 with proba β ( t + 1 2 ) Possibility of having forbidden places, obliged places, non flat landscape, jumps other than ± 1 2 ,... B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  18. Partition function Left Right N ! N µ " N ! " µ Plane partitions: � q | π | Z N λ , N µ , N ν ( λ, µ, ν ) = π,∂π =( λ,µ,ν ) Example, Mac-Mahon formula N λ = N µ = N ν = ∞ , λ, µ, ν = ∅ : ∞ � � q | π | = ( 1 − q k ) − k = 1 + q + 3 q 2 + 6 q 3 + 13 q 4 + . . . Z = π k = 1 B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  19. Partition function, TASEP Generalization self-avoiding process in a domain D : t max − 1 N � � � e − V t ( h i ( t )) q h i ( t ) Z = t = t min i = 1 h 1 ( t ) > ··· > h N ( t ) � � � � α ( t ′ ) δ h i ( t ′ + 1 2 + β ( t ′ ) δ h i ( t ′ + 1 2 ) , h i ( t ′ − 1 2 )+ 1 2 ) , h i ( t ′ − 1 2 ) − 1 2 t ′ i B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  20. Transformation into a matrix integral Idea: • Gessel-Viennot: � � i paths = � h i ( t ) det ( paths ) . h 1 ( t ) > ··· > h N ( t ) • Fourrier transform δ -functions: • Harish Chandra-Itzykson-Zuber: H = diag ( h i ) , R = diag ( r i ) • Matrices: M ( t ) = U H ( t ) U † , ∆( H ( t )) 2 dH ( t ) dU = dM ( t ) , M ( t ′ ) = U † R ( t ′ ) U , ∆( R ( t ′ )) 2 dR ( t ′ ) dU = d ˜ and ˜ M ( t ′ ) . h i ( t ) = eigenvalues of M ( t ) , and r i ( t ) = eigenvalues of ˜ M ( t ′ ) . → Matrix model B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  21. Transformation into a matrix integral Idea: • Gessel-Viennot: � � i paths = � h i ( t ) det ( paths ) . h 1 ( t ) > ··· > h N ( t ) • Fourrier transform δ -functions: • Harish Chandra-Itzykson-Zuber: H = diag ( h i ) , R = diag ( r i ) • Matrices: M ( t ) = U H ( t ) U † , ∆( H ( t )) 2 dH ( t ) dU = dM ( t ) , M ( t ′ ) = U † R ( t ′ ) U , ∆( R ( t ′ )) 2 dR ( t ′ ) dU = d ˜ and ˜ M ( t ′ ) . h i ( t ) = eigenvalues of M ( t ) , and r i ( t ) = eigenvalues of ˜ M ( t ′ ) . → Matrix model B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  22. Transformation into a matrix integral Idea: • Gessel-Viennot: � � i paths = � h i ( t ) det ( paths ) . h 1 ( t ) > ··· > h N ( t ) • Fourrier transform δ -functions: � i ∞ − i ∞ dr e r ( h ( t + 1 ) − h ( t )) e ± r / 2 . δ ( h ( t + 1 ) − h ( t ) ± 1 2 ) = • Harish Chandra-Itzykson-Zuber: H = diag ( h i ) , R = diag ( r i ) • Matrices: M ( t ) = U H ( t ) U † , ∆( H ( t )) 2 dH ( t ) dU = dM ( t ) , M ( t ′ ) = U † R ( t ′ ) U , ∆( R ( t ′ )) 2 dR ( t ′ ) dU = d ˜ and ˜ M ( t ′ ) . h i ( t ) = eigenvalues of M ( t ) , and r i ( t ) = eigenvalues of ˜ M ( t ′ ) . → Matrix model B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  23. Transformation into a matrix integral Idea: • Gessel-Viennot: � � i paths = � h i ( t ) det ( paths ) . h 1 ( t ) > ··· > h N ( t ) • Fourrier transform δ -functions: α δ ( h ( t + 1 ) − h ( t ) + 1 2 ) + β δ ( h ( t + 1 ) − h ( t ) − 1 2 ) = � i ∞ − i ∞ dr e r ( h ( t + 1 ) − h ( t )) ( α e r / 2 + β e − r / 2 ) . • Harish Chandra-Itzykson-Zuber: H = diag ( h i ) , R = diag ( r i ) • Matrices: M ( t ) = U H ( t ) U † , ∆( H ( t )) 2 dH ( t ) dU = dM ( t ) , M ( t ′ ) = U † R ( t ′ ) U , ∆( R ( t ′ )) 2 dR ( t ′ ) dU = d ˜ and ˜ M ( t ′ ) . h i ( t ) = eigenvalues of M ( t ) , and r i ( t ) = eigenvalues of ˜ M ( t ′ ) . → Matrix model B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  24. Transformation into a matrix integral Idea: • Gessel-Viennot: � � i paths = � h i ( t ) det ( paths ) . h 1 ( t ) > ··· > h N ( t ) • Fourrier transform δ -functions: α δ ( h ( t + 1 ) − h ( t ) + 1 2 ) + β δ ( h ( t + 1 ) − h ( t ) − 1 2 ) = � i ∞ − i ∞ dr e r ( h ( t + 1 ) − h ( t )) ( α e r / 2 + β e − r / 2 ) . • Harish Chandra-Itzykson-Zuber: H = diag ( h i ) , R = diag ( r i ) � U ( N ) dU e Tr R U H U † . det ( e r i h j ) = ∆( H )∆( R ) • Matrices: M ( t ) = U H ( t ) U † , ∆( H ( t )) 2 dH ( t ) dU = dM ( t ) , M ( t ′ ) = U † R ( t ′ ) U , ∆( R ( t ′ )) 2 dR ( t ′ ) dU = d ˜ and ˜ M ( t ′ ) . h i ( t ) = eigenvalues of M ( t ) , and r i ( t ) = eigenvalues of ˜ M ( t ′ ) . → Matrix model B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

  25. Transformation into a matrix integral Idea: • Gessel-Viennot: � � i paths = � h i ( t ) det ( paths ) . h 1 ( t ) > ··· > h N ( t ) • Fourrier transform δ -functions: α δ ( h ( t + 1 ) − h ( t ) + 1 2 ) + β δ ( h ( t + 1 ) − h ( t ) − 1 2 ) = � i ∞ − i ∞ dr e r ( h ( t + 1 ) − h ( t )) ( α e r / 2 + β e − r / 2 ) . • Harish Chandra-Itzykson-Zuber: H = diag ( h i ) , R = diag ( r i ) det ( e r i ( t + 1 2 ) h j ( t + 1 ) ) = � U ( N ) dU e Tr R ( t + 1 2 ) U H ( t + 1 ) U † , ∆( H ( t + 1 ))∆( R ( t + 1 2 )) det ( e − r i ( t + 1 2 ) h j ( t ) ) = � U ( N ) dU e − Tr R ( t + 1 2 ) U H ( t ) U † . ∆( H ( t ))∆( R ( t + 1 2 )) • Matrices: M ( t ) = U H ( t ) U † , ∆( H ( t )) 2 dH ( t ) dU = dM ( t ) , M ( t ′ ) = U † R ( t ′ ) U , ∆( R ( t ′ )) 2 dR ( t ′ ) dU = d ˜ and ˜ M ( t ′ ) . h i ( t ) = eigenvalues of M ( t ) , and r i ( t ) = eigenvalues of ˜ M ( t ′ ) . → Matrix model B. Eynard, IPHT-CEA-SACLAY Matrix models and tilings

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend