imfd
play

imfd DFG-STW, 2014 CONTENT Implementation in Software Capillary - PowerPoint PPT Presentation

DEM simulation of weakly wetted Users committee meeting granular material Short overview of the work done by FG-team imfd DFG-STW, 2014 CONTENT Implementation in Software Capillary bridge models Results of DEM-simulations of


  1. “DEM simulation of weakly wetted Users’ committee meeting granular material” Short overview of the work done by FG-team imfd

  2. DFG-STW, 2014 CONTENT Implementation in Software Capillary bridge models Results of DEM-simulations of split-bottom shear-cell CFD-simulations of the shear cell Conclusions TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 1 imfd

  3. Implementation in Software Pros TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 Old-style code capillary simulations (v2.x) Some problems with Cons High calculation speed MPI-support LIGGGHTS (LAMMPS improved for general granular and granular heat transfer simulations) No MPI-support Lower calculation speed Cons OpenMP-parallelization Reliable, modern code Pros Yade (Yet Another Dynamic Engine) 2 imfd

  4. Capillary bridge models 2. Liquid bridge volume V b TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 schema Capillary bridge Fig. 1: Controlled parameter: Separation particle distance s 3. Rabinovich et al. Input constant parameters: 2. Willett et al. (full and reduced) 1. Weigert et al. Implemented CBMs: 3 imfd θ i 1. Contact angle θ s j V b 3. Surface tension γ

  5. Capillary bridge models 100 TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 Comparison of difgerent kinds of capillary bridge models with experimental Fig. 2: Exp RabL WilF WilR Weig 250 200 150 50 0 350 300 250 200 150 100 50 0 Comparison with experiments of Willett et al. 4 imfd F [ µ N ] a [ µ m ] data from Willett. R p = 2 . 381 mm, V b = 13 . 6 nl, θ = 0 ◦ .

  6. Results of DEM-simulations of split-bottom shear-cell Fig. 3: Setup of split-bottom confjguration DEM parameters TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 5 imfd R p = 2 . 381 mm; ρ = 150 kg / m 3 ; t c = 5 . 4 · 10 − 6 s; e n = e t = 0 . 83 Particle number ≈ 2 · 10 5 ; Rotation period 100s;

  7. Results of DEM-simulations of split-bottom shear-cell Export in text-form, VTK TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 t Snapshots analyze Steady state analyze External libraries: boost, alglib, vtk, eigen3 6 Import of text-data in difgerent formats Written in C++ AVERAGING TECHNIQUES The software to analyze DEM-shear-cell results https://github.com/gladk/rheometeranalyze RheometerAnalyze imfd 1 t +∆ t < φ > = 1 t 2 ∫ φ = φ dt ∫ φ dt t 2 − t 1 ∆ t t 1 t 2 − t 1 >> ∆ t

  8. Results of DEM-simulations of split-bottom shear-cell Typical results from DEM-simulation: Fig. 4: Fig. 5: Fig. 6: Fig. 7: p TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 7 imfd ω τ γ ˙

  9. Results of DEM-simulations of split-bottom shear-cell 30 TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 Fig. 8: p [ Pa ] 80 70 60 50 40 8 20 Local shear stress as a function of local pressure: 10 0 imfd 10 ) ] 8 [ 0 l ) = n ] [ 4 7 l ( n b = 3 V 1 6 x . 0 ( 0 V b . ) 2 ] + [ 3 1 l n 3 4 1 = τ [ Pa ] . x 0 ( 3 V b . 1 + 2 3 1 x . 0 0 τ ( P ) .

  10. Results of DEM-simulations of split-bottom shear-cell RabL, 13nl TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 Fig. 9: RabL, 74nl Dry 1 0.1 100 10 9 imfd η [ Pas ] γ [ s − 1 ] ˙ γ > 0 . 02 s − 1 Apparent shear viscosity η ( ˙ γ ) for ˙

  11. Results of DEM-simulations of split-bottom shear-cell Fig. 10: Fig. 11: Fig. 12: Fig. 13: TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 10 imfd Development of the local shear deformation γ : < γ > ( t = 0 . 0225 s ) < γ > ( t = 2 . 25 s ) < γ > ( t = 4 . 5 s ) < γ > ( t = 9 . 0 s )

  12. Results of DEM-simulations of split-bottom shear-cell t [ s ] TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 both weakly wet and dry state Comparison of shear band position and width as a function of time for Fig. 14: Dry 11 imfd 0 . 26 0 . 24 0 . 22 0 . 2 0 . 18 Rz ± W [ m ] 0 . 16 0 . 14 V b = 13[ nl ] 0 . 12 V b = 74[ nl ] 0 . 1 0 1 2 3 4 5 6 7 8

  13. CFD-simulations of the shear cell Fig. 15: Fig. 16: Fig. 17: Fig. 18: TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 12 imfd U ( t = 0 . 01) s U ( t = 0 . 10) s U ( t = 0 . 30) s U ( t = 1 . 00) s

  14. CFD-simulations of the shear cell R-position [ m ] TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 Normalized velocity profjles from CFD and DEM simulations Fig. 19: DEM z=1.0h DEM z=0.5h DEM z=0.1h CFD z=1.0h CFD z=0.5h CFD z=0.1h 13 imfd 1 . 2 1 0 . 8 0 . 6 ω [ s − 1 ] 0 . 4 0 . 2 0 − 0 . 2 0 50 100 150 200 250 300

  15. Conclusions 1. Implement and compare of difgerent capillary bridge models 2. DEM simulations of the shear cell 3. Micro-macro parameter transitions 4. CFD-simulations of the shear cell (fjrst stage) TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 14 imfd

  16. Conclusions Thank you for your attention! TU Bergakademie Freiberg | IMFD | Gladky | DFG-STW, 2014 | 2014-09-25 15 imfd

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend