image processing ii
play

Image Processing II Computer Vision Fall 2018 Columbia University - PowerPoint PPT Presentation

Image Processing II Computer Vision Fall 2018 Columbia University Convolution Review Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90


  1. Image Processing II Computer Vision Fall 2018 Columbia University

  2. Convolution Review

  3. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  4. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  5. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  6. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  7. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  8. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  9. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  10. Cross Correlation 0 0 0 1 G [ x , y ] -1 0 1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  11. Convolution 0 0 0 1 G [ x , y ] 1 0 -1 F [ x , y ] 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 90 90 90 90 0 0 90 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 90 0 90 90 90 0 0 0 0 0 90 90 90 90 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  12. Convolution ( f * g )[ x , y ] = ∑ f [ x − i , y − j ] g [ i , j ] i , j g Flip LR, UD f

  13. We flip for the nice properties Commutative: F ∗ H = H ∗ F Associative: ( F ∗ H ) ∗ G = F ∗ ( H ∗ G ) Distributive: ( F ∗ G ) + ( H ∗ G ) = ( F + H ) ∗ G

  14. Fourier Transforms

  15. Vision is Repetitive

  16. Joseph Fourier A bold idea (1807): Any univariate function can be rewritten as a weighted sum of sines and cosines of di ff erent frequencies. Don’t believe it? Neither did Lagrange, Laplace, Poisson and other bigwigs Not translated into English until 1878! Wikipedia Source: James Hays

  17. How to build this 1D signal using sin waves?

  18. How to build this 1D signal using sin waves? = + + + + +…

  19. =

  20. = +

  21. = + +

  22. = + + + + +…

  23. Where we are going… = + + + + +…

  24. Background: Sinusoids A = amplitude = phase ϕ f = frequency Source: Deva Ramanan

  25. Fourier Transform Signal Amplitude Phase

  26. 2D Fourier Transform Signal Amplitude Phase

  27. Sine/cosine and circle e ift = cos ft + i sin ft sin t Amplitude : Radius of circle cos t Frequency : How fast you change t Wikipedia – Unit Circle

  28. Square wave (approx.) Mehmet E. Yavuz

  29. Sawtooth wave (approx.) Mehmet E. Yavuz

  30. Sine/cosine and circle e ift = cos ft + i sin ft sin t Amplitude : Radius of circle cos t Frequency : How fast you change t Wikipedia – Unit Circle

  31. Towards Fourier Transform g ( t ) e − 2 π ift Maps g(t) on to the unit circle with g ( t ) frequency f sin t cos t Wikipedia – Unit Circle

  32. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ sin t How I think of it: You wrap g(t) around the cos t circle with frequency f, then calculate average position of g(t) Wikipedia – Unit Circle

  33. Signal that we want to compute FT on g ( t ) = cos( t ) + 1

  34. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.001

  35. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.002

  36. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.003

  37. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.3

  38. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.4

  39. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.5

  40. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 0.317

  41. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 1 π

  42. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 1 2 π

  43. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t ) + 1 f = 1 2 π G ( f )

  44. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = cos( t + 0.5) + 1 f = 1 2 π G ( f )

  45. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ g ( t ) e − 2 π ift , t = 0…100 π g ( t ) = 2 cos( t + 0.5) + 1 f = 1 G ( f ) 2 π

  46. The Fourier Transform G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ Amplitude: ℜ [ G ( f )] 2 + ℑ [ G ( f )] 2 Phase: tan − 1 ℑ [ G ( f )] ℜ [ G ( f )]

  47. Inverse Fourier Transform Signal Amplitude Phase

  48. Fourier Transform: G ( f ) = ∫ ∞ g ( t ) e − 2 π ift dt −∞ Inverse Fourier Transform: g ( t ) = ∫ ∞ G ( f ) e 2 π ift dt −∞

  49. Frequencies Images are 64x64 pixels. The wave is a cosine (if phase is zero). Source: Bill Freeman

  50. FT has peaks at spatial frequencies of repeated structure Image Amplitude Source: Deva Ramanan

  51. Source: Deva Ramanan

  52. Source: Deva Ramanan

  53. Source: Deva Ramanan

  54. Lunar Orbital Image (1966) Amplitude Source: Deva Ramanan

  55. Lunar Orbital Image (1966) Amplitude Remove Peaks Source: Deva Ramanan

  56. Let’s Practice

  57. Some important Fourier transforms Image Magnitude DFT Phase DFT Images are 64x64 pixels. Source: Bill Freeman

  58. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  59. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  60. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  61. Image Magnitude DFT Scale Small image 
 details produce content in high spatial frequencies Source: Bill Freeman

  62. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  63. Some important Fourier transforms Image Magnitude DFT Phase DFT Source: Bill Freeman

  64. Image Magnitude DFT Orientation A line transforms to a line oriented perpendicularly to the first. Source: Bill Freeman

  65. Game: find the right pairs Images C A B DFT 
 magnitude 1 2 3 fx(cycles/image pixel size) fx(cycles/image pixel size) fx(cycles/image pixel size) Source: Bill Freeman

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend