identification of input output lpv models
play

Identification of Input/Output LPV Models V. Laurain, M. Gilson, R. - PowerPoint PPT Presentation

Identification of Input/Output LPV Models V. Laurain, M. Gilson, R. T oth, H. Garnier CRAN, Nancy-Universit e, DCSC, TU Delft Delft Center for System Delft Center for System s and Control s and Control V. Laurain, M. Gilson, R. T


  1. Identification of Input/Output LPV Models V. Laurain, M. Gilson, R. T´ oth, H. Garnier CRAN, Nancy-Universit´ e, DCSC, TU Delft Delft Center for System Delft Center for System s and Control s and Control V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 1 / 32

  2. Outline Introduction 1 Problem Description 2 LPV model description Scheduling dependency model Prediction Error for LPV systems 3 Usual linear regression The literature methods Reformulation of the problem RIV Algorithm Results 4 LPV-RIV performance Application example 5 Conclusion 6 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 2 / 32

  3. Introduction Outline Introduction 1 2 Problem Description LPV model description Scheduling dependency model Prediction Error for LPV systems 3 Usual linear regression The literature methods Reformulation of the problem RIV Algorithm Results 4 LPV-RIV performance 5 Application example Conclusion 6 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 3 / 32

  4. Introduction What is an LPV model ? Definition Linear relationship between the input and output The model parameters vary in time according to an external variable : The scheduling variable Identification of LPV models Control theory of LPV models well developed (Gain scheduling) LPV State-Space identification methods : Multiple models approaches, LMI’s based methods, Gradient methods Input/Output identification methods : Linear regression methods , Nonlinear optimization Advantages Tradeoff between LTI systems and NL systems Wide range of behavior representation capability Many practical applications (environment, automotive, wafer scanners...) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 4 / 32

  5. Introduction What is an LPV model ? Definition Linear relationship between the input and output The model parameters vary in time according to an external variable : The scheduling variable Identification of LPV models Control theory of LPV models well developed (Gain scheduling) LPV State-Space identification methods : Multiple models approaches, LMI’s based methods, Gradient methods Input/Output identification methods : Linear regression methods , Nonlinear optimization Advantages Tradeoff between LTI systems and NL systems Wide range of behavior representation capability Many practical applications (environment, automotive, wafer scanners...) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 4 / 32

  6. Introduction What is an LPV model ? Definition Linear relationship between the input and output The model parameters vary in time according to an external variable : The scheduling variable Identification of LPV models Control theory of LPV models well developed (Gain scheduling) LPV State-Space identification methods : Multiple models approaches, LMI’s based methods, Gradient methods Input/Output identification methods : Linear regression methods , Nonlinear optimization Advantages Tradeoff between LTI systems and NL systems Wide range of behavior representation capability Many practical applications (environment, automotive, wafer scanners...) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 4 / 32

  7. Introduction LPV modeling concept of a plane Linear system for a given altitude The system parameters vary with the altitude V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 5 / 32

  8. Introduction LPV modeling concept of a bar under constraint Consider a metal bar under a constraint F . F x The displacement is x For a constant temperature : x = kF with k the stiffness coefficient When considering the temperature θ , the LPV model can be written : x = k ( θ ) F V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 6 / 32

  9. Problem Description Outline Introduction 1 2 Problem Description LPV model description Scheduling dependency model Prediction Error for LPV systems 3 Usual linear regression The literature methods Reformulation of the problem RIV Algorithm Results 4 LPV-RIV performance 5 Application example Conclusion 6 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 7 / 32

  10. Problem Description LPV model description System LPV IO model LTI ( A ( q − 1 ) χ ( t k ) = B ( q − 1 ) u ( t k ) M y ( t k ) = χ ( t k ) + v ( t k ) χ is the noise-free output u is the input v is the additive noise with bounded spectral density y is the noisy output of the system q is the time-shift operator, i.e. q − i u ( t k ) = u ( t k − i ) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 8 / 32

  11. Problem Description LPV model description System LPV IO model LPV ( A ( p k , q − 1 ) χ ( t k ) = B ( p k , q − 1 ) u ( t k ) M y ( t k ) = χ ( t k ) + v ( t k ) χ is the noise-free output u is the input v is the additive noise with bounded spectral density y is the noisy output of the system q is the time-shift operator, i.e. q − i u ( t k ) = u ( t k − i ) p is the scheduling parameter V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 8 / 32

  12. Problem Description LPV model description System LPV IO model LTI ( A ( q − 1 ) χ ( t k ) = B ( q − 1 ) u ( t k ) M y ( t k ) = χ ( t k ) + v ( t k ) A ( q − 1 ) and B ( q − 1 ) are polynomials in q − 1 of degree n a and n b respectively : n a X A ( q − 1 ) = 1 + a i q − i i =1 n b X B ( q − 1 ) = b j q − i , j =0 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 8 / 32

  13. Problem Description LPV model description System LPV IO model LPV ( A ( p k , q − 1 ) χ ( t k ) = B ( p k , q − 1 ) u ( t k ) M y ( t k ) = χ ( t k ) + v ( t k ) A ( p k , q − 1 ) and B ( p k , q − 1 ) are polynomials in q − 1 of degree n a and n b respectively : n a X A ( p k , q − 1 ) = 1 + a i ( p k ) q − i i =1 n b X B ( p k , q − 1 ) = b j ( p k ) q − i , j =0 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 8 / 32

  14. Problem Description Scheduling dependency model Model Process Model “ ” A ( p k , q − 1 , ρ ) , B ( p k , q − 1 , ρ ) ` ´ G ρ : = A ρ , B ρ where the p dependent polynomials A and B are parameterized as n a A ρ : A ( p k , q − 1 , ρ ) = 1 + a i ( p k ) q − i , X i =1 n b B ρ : B ( p k , q − 1 , ρ ) = b j ( p k ) q − i . X j =0 Usual assumption : static dependency on p n α X a i ( p k ) = a i , 0 + a i , l f l ( p k ) i = 1 , . . . , n a l =1 n β X b j ( p k ) = b j , 0 + b j , l g l ( p k ) j = 0 , . . . , n b l =1 n β { f l } n α l =1 and { g l } l =1 are analytic functions of p known a priori (polynomials for example) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 9 / 32

  15. Problem Description Scheduling dependency model Model Process Model “ ” A ( p k , q − 1 , ρ ) , B ( p k , q − 1 , ρ ) ` ´ G ρ : = A ρ , B ρ where the p dependent polynomials A and B are parameterized as n a A ρ : A ( p k , q − 1 , ρ ) = 1 + a i ( p k ) q − i , X i =1 n b B ρ : B ( p k , q − 1 , ρ ) = b j ( p k ) q − i . X j =0 Usual assumption : static dependency on p n α X a i ( p k ) = a i , 0 + a i , l f l ( p k ) i = 1 , . . . , n a l =1 n β X b j ( p k ) = b j , 0 + b j , l g l ( p k ) j = 0 , . . . , n b l =1 Parameter vector ρ = [ a 1 , 0 . . . a n a , n α , b 0 , 0 . . . b n b , n β ] ⊤ V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 9 / 32

  16. Prediction Error for LPV systems Outline Introduction 1 2 Problem Description LPV model description Scheduling dependency model Prediction Error for LPV systems 3 Usual linear regression The literature methods Reformulation of the problem RIV Algorithm Results 4 LPV-RIV performance 5 Application example Conclusion 6 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 10 / 32

  17. Prediction Error for LPV systems Usual linear regression ( A ( p k , q − 1 , ρ ) χ ( t k )= B ( p k , q − 1 , ρ ) u ( t k ) M θ y ( t k )= χ ( t k ) + v ( t k ) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 11 / 32

  18. Prediction Error for LPV systems Usual linear regression ( A ( p k , q − 1 , ρ ) χ ( t k )= B ( p k , q − 1 , ρ ) u ( t k ) M θ A ( p k , q − 1 , ρ ) y ( t k )= A ( p k , q − 1 , ρ ) χ ( t k ) + A ( p k , q − 1 , ρ ) v ( t k ) A ( p k , q − 1 , ρ ) y ( t k )= B ( p k , q − 1 , ρ ) u ( t k ) + A ( p k , q − 1 , ρ ) v ( t k ) V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 11 / 32

  19. Prediction Error for LPV systems Usual linear regression A ( p k , q − 1 , ρ ) y ( t k )= B ( p k , q − 1 , ρ ) u ( t k ) + A ( p k , q − 1 , ρ ) v ( t k ) ! n b ! n a X X a i ( p k ) q − i b j ( p k ) q − j u ( t k ) + A ( p k , q − 1 , ρ ) v ( t k ) 1 + y ( t k )= i =1 j =0 V. Laurain, M. Gilson, R. T´ oth, H. Garnier LPV-RIV () S´ eminaire LOUVAIN 11 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend