h filtering of uncertain lpv systems with time delay
play

H Filtering of Uncertain LPV Systems with Time-Delay C.Briat, - PowerPoint PPT Presentation

H Filtering of Uncertain LPV Systems with Time-Delay C.Briat, O.Sename and JF.Lafay August 2009 ECC09 - Budapest, Hungary C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 1/21 Outline Introduction Stability of Uncertain LPV


  1. H ∞ Filtering of Uncertain LPV Systems with Time-Delay C.Briat, O.Sename and JF.Lafay August 2009 ECC’09 - Budapest, Hungary C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 1/21

  2. Outline Introduction Stability of Uncertain LPV Systems with Delays The filtering Problem Conclusion and Future Works C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 2/21

  3. Introduction Considered Systems Filters Structures C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 3/21

  4. Considered Systems (1) Uncertain LPV Systems with Delay  ˙    x ( t ) x ( t ) z ( t ) = Σ( ρ ( t ) , δ ) x ( t − h ( t ))     y ( t ) w ( t ) x ( θ ) = φ ( θ ) , θ ∈ [ − h M , 0 ] ρ ∈ U ρ ρ ˙ ∈ hull [ U ν ] δ ∈ U δ h ( t ) ∈ [ 0 , h M ] ˙ h ( t ) < µ < 1 C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 4/21

  5. Considered Systems (2) System Matrix :   A ( ρ ) + ∆ A ( ρ, δ ) A h ( ρ ) + ∆ A h ( ρ, δ ) E ( ρ ) + ∆ E ( ρ, δ ) Σ = C ( ρ ) C h ( ρ ) F ( ρ )   C y ( ρ ) + ∆ C y ( ρ, δ ) C yh ( ρ ) + ∆ C yh ( ρ, δ ) F y ( ρ ) + ∆ F y ( ρ, δ ) where the uncertain part obeys � ∆ A � � H 0 � � F 0 � ∆ A h ∆ E F 1 F 2 ( ρ, δ ) = ( ρ )∆( δ ) ( ρ ) ∆ C y ∆ C yh ∆ F y H 1 F 3 F 4 F 5 with || ∆ || 2 ≤ 1 C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 5/21

  6. Filters Structures Filters with memory � ˙ �   x F ( t ) � � A F ( ρ ) x F ( t ) A hF ( ρ ) B F ( ρ ) = x F ( t − h ( t ))   z F ( t ) C F ( ρ ) C hF ( ρ ) D F ( ρ ) y ( t ) Memoryless filters � ˙ � � � � � x F ( t ) A F ( ρ ) B F ( ρ ) x F ( t ) = z F ( t ) C F ( ρ ) D F ( ρ ) y ( t ) These matrices are aimed to be chosen such that || z − z F || L 2 ≤ γ || w || L 2 with a minimal L 2 -gain γ > 0. C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 6/21

  7. Stability of Uncertain LPV Systems with Delays Lyapunov-Krasovskii Functional Asymptotic Stability Theorem Relaxed Version C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 7/21

  8. Lyapunov-Krasovskii Functional (1) Delay-Dependent LKF : V ( x t , ˙ V 1 ( x t , ρ ) + V 2 ( x t ) + V 3 ( ˙ x t , ρ ) = x t ) x ( t ) T P ( ρ ) x ( t ) V 1 ( x t , ρ ) = � t x ( θ ) T Qx ( θ ) d θ V 2 ( x t ) = t − h ( t ) � 0 � t x ( η ) T R ˙ V 3 ( ˙ ˙ x t ) = h M x ( η ) d η d θ − h M t + θ whose derivative along the trajectories solution of the system satisfies : �� � ∂ ˙ x ( t ) T P ( ρ ) x ( t ) + x ( t ) T P ( ρ ) ˙ x ( t ) + x ( t ) T ˙ V 1 = ρ i ˙ P ( ρ ) x ( t ) ∂ρ i i ˙ x ( t ) T Qx ( t ) − ( 1 − µ ) x ( t − h ( t )) T Qx ( t − h ( t )) V 2 ≤ � t ˙ h 2 x ( t ) T R ˙ x ( θ ) T R ˙ M ˙ ˙ V 3 ≤ x ( t ) − h M x ( θ ) d θ t − h ( t ) C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 8/21

  9. Lyapunov-Krasovskii Functional (2) Using Jensen’s Inequality : � T � t �� t �� t � x ( θ ) T R ˙ ˙ ˙ ˙ − h M x ( θ ) d θ ≤ − x ( θ ) d θ R x ( θ ) d θ t − h ( t ) t − h ( t ) t − h ( t ) we get � Ψ + h 2 M A T RA PA h + R + h 2 M A T RA h � ˙ V ≤ χ ( t ) T χ ( t ) − ( 1 − µ ) Q − R + h 2 M A T ⋆ h RA h ∂ with Ψ = A T P + PA + Q − R + � i ˙ ρ i P ( ρ ) and ∂ρ i χ ( t ) = col ( x ( t ) , x ( t − h ( t )) . C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 9/21

  10. Asymptotic Stability Theorem The unertain LPV system is asymptotically stable for all h ( t ) ∈ [ 0 , h M ] such that ˙ h ( t ) < µ if there exist P : U ρ → S n ++ , Q , R ∈ S n ++ such that the LMI  h M A ( ρ ) T R  Ψ( ρ, ν ) P ( ρ ) A h ( ρ ) + R  ≺ 0 h M A h ( ρ ) T R ⋆ − ( 1 − µ ) Q − R  ⋆ ⋆ − R holds for all ( ρ, ν ) ∈ U ρ × U ν with ∂ Ψ( ρ, ν ) = A ( ρ ) T P ( ρ ) + P ( ρ ) A ( ρ ) + Q − R + � i ν i P ( ρ ) . ∂ρ i C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 10/21

  11. Bounded Real Lemma Theorem The unertain LPV system is asymptotically stable for all h ( t ) ∈ [ 0 , h M ] such that ˙ h ( t ) < µ if there exist P : U ρ → S n ++ , Q , R ∈ S n ++ and γ > 0 such that the LMI C ( ρ ) T h M A ( ρ ) T R   Ψ( ρ, ν ) P ( ρ ) A h ( ρ ) + R P ( ρ ) E ( ρ ) C h ( ρ ) T h M A h ( ρ ) T R ⋆ − ( 1 − µ ) Q − R 0    F ( ρ ) T h M E ( ρ ) T R  ⋆ ⋆ − γ I ≺ 0     ⋆ ⋆ ⋆ − γ I 0   ⋆ ⋆ ⋆ ⋆ − R holds for all ( ρ, ν ) ∈ U ρ × U ν with ∂ Ψ( ρ, ν ) = A ( ρ ) T P ( ρ ) + P ( ρ ) A ( ρ ) + Q − R + � i ν i P ( ρ ) . Moreover, ∂ρ i we have || z || L 2 ≤ γ || w || L 2 . C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 11/21

  12. Relaxed Version Theorem The unertain LPV system is asymptotically stable for all h ( t ) ∈ [ 0 , h M ] such that ˙ h ( t ) < µ if there exist P : U ρ → S n ++ , X : U ρ → R n × n , Q , R ∈ S n ++ and γ > 0 such that the LMI − ( X + X T ) P + X T A X T A h X T E X T   0 h M R C T ⋆ Φ 1 R 0 0 0     C T ⋆ ⋆ Φ 2 0 0 0   h   F T ⋆ ⋆ ⋆ − γ I 0 0 ≺ 0     ⋆ ⋆ ⋆ ⋆ − γ I 0 0     ⋆ ⋆ ⋆ ⋆ ⋆ − P − h M R   ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ − R ∂ holds for all ( ρ, ν ) ∈ U ρ × U ν with Φ 1 = P + Q − R + � i ν i P ( ρ ) ∂ρ i and Φ 2 = − ( 1 − µ ) Q − R. Moreover, we have || z || L 2 ≤ γ || w || L 2 . C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 12/21

  13. Filtering Problem Augmented System Relaxation Example C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 13/21

  14. Augmented System Interconnection between the system and filter ˙ x a ( t ) = A x a ( t ) + A h x a ( t − h ( t )) + E w ( t ) z e ( t ) = C x a ( t ) + C h x a ( t − h ( t )) + F w ( t ) x a ( t ) = col ( x ( t ) , x F ( t )) z e ( t ) = z ( t ) − z F ( t ) with � � � � � � A 0 A h 0 E A = A h = E = A − B F C y A F A h − B F C yh A Fh E − B F F y � C − D F C y − C F � � C h − D F C yh − C Fh � C = C F C h = C Fh F = F − D F F y C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 14/21

  15. Relaxation of Bilinear Terms Bilinear Terms X T A , X T A h , X T E � X T X T � � � A 0 X T A 1 3 = X T X T A − B F C y A F 2 4 � ( X 1 + X 3 ) T A − X T X T � 3 B F C y 3 A F = ( X 2 + X 4 ) T A − X T X T 4 B F C y 4 A F Set X 4 = X 3 (both system and filter have the same order) Linearization � ˜ ˜ ˜ = X T � � A F � A hF B F A F A hF B F 3 we get a LMI problem C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 15/21

  16. Example 1 Let � � � � � � − 2 0 − 1 0 0 ˙ x ( t ) = x ( t ) + x ( t − h ( t )) + w ( t ) 0 − 0 . 9 − 1 − 1 1 � 1 2 � z ( t ) = x ( t ) � 1 0 � y ( t ) = x ( t ) We set h M = 1 and we study γ w.r.t. µ using a memoryless filter µ 0 0.4 0.8 Fridman [2003] 1.4086 1.8311 15.8414 This result 0.06484 0.10651 0.48661 C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 16/21

  17. Example 2(1) We consider the LPV system � 0 � � � 1 + 0 . 2 ρ 0 . 2 ρ 0 . 1 ˙ x ( t ) = x ( t ) + x ( t − h ( t )) − 2 − 3 + 0 . 1 ρ − 0 . 2 + 0 . 1 ρ − 0 . 3 � � − 0 . 2 + w ( t ) − 0 . 2 � 0 . 3 � 0 . 5 ρ � � 1 . 5 z ( t ) = x ( t ) + w ( t ) − 0 . 45 0 . 75 − 0 . 5 ρ � � � � 0 1 0 y ( t ) = x ( t ) + w ( t ) 0 . 5 0 1 + 0 . 1 ρ ρ ∈ [ − 1 , 1 ] ρ ∈ [ − 1 , 1 ] ˙ we choose P ( ρ ) = P 0 + P 1 ρ and we study γ w.r.t. the delay bound h M C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 17/21

  18. Example 2(2) We get the following figures C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 18/21

  19. Example 2(3) Adding uncertainties H 0 = H 1 = 0 . 1 I , F 0 = F 1 = F 3 = F 4 = I � 1 � F 2 = F 5 = 1 We get C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 19/21

  20. Conclusion et Future Works C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 20/21

  21. Conclusion et Future Works Advantages (Stability/Performance Analysis) : Simple and Fast Interesting results but still conservative despite of the use of the Jensen’s inequality. Use a more complex LKF , e.g. � t − ( i − 1 ) h n ( t ) N � x ( θ ) T Q i x ( θ ) d θ, V 2 = h n ( t ) = h ( t ) / N t − ih n ( t ) i = 1 � t − ( i − 1 )¯ � t N h ¯ ¯ � x ( η ) T R i ˙ ˙ V 3 = h x ( η ) d η d θ, h = h M / N t − i ¯ h t + θ i = 1 Tackle the delay knowledge uncertainty C.Briat, O.Sename and JF.Lafay corentin.briat@briat.info 21/21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend