i njection velocity in thin channel i nas hemts
play

I njection Velocity in Thin-Channel I nAs HEMTs Tae-Woo Kim and - PowerPoint PPT Presentation

I njection Velocity in Thin-Channel I nAs HEMTs Tae-Woo Kim and Jess A. del Alamo Microsystems Technology Laboratories MIT IPRM Sponsors: Intel, FCRP-MSD May 24 th , 2011 Fabrication: MTL, NSL, SEBL at MIT Acknowledgement: Dae-Hyun Kim


  1. I njection Velocity in Thin-Channel I nAs HEMTs Tae-Woo Kim and Jesús A. del Alamo Microsystems Technology Laboratories MIT IPRM Sponsors: Intel, FCRP-MSD May 24 th , 2011 Fabrication: MTL, NSL, SEBL at MIT Acknowledgement: Dae-Hyun Kim (Teledyne Scientific) 1

  2. I njection Velocity in I I I -V QW FETs • Injection velocity: average velocity of electrons at virtual source - sets I ON which determines switching speed • Recent measurements of v inj in InAs HEMTs: 2 /V-s  n ~ 13,000 cm 4 V DS = 0.5 V v inj InAs, t ch = 10 nm E C 3 >2X 7 cm/s] higher E V 2 at half V DD v inj [10 1 *Strain-Si *Si nFETs Kim, IEDM 2009 (V DS = 1.1 ~ 1.3 V) 0 10 100 L g [nm] • v inj (InAs) > 2 v inj (Si) at less than half V DD • Derived v inj values consistent with purely ballistic transport 2

  3. Role of channel thickness in QW-FET scalability 90 160 In 0.7 Ga 0.3 As HEMT: t ch = 13 nm Subtreshold swing [mV/dec] In 0.7 Ga 0.3 As HEMTs: t ch = 13 nm 80 120 DIBL [mV/V] InAs HEMTs: InAs HEMTs: t ch = 10 nm t ch = 10 nm 70 80 InAs HEMTs: t ch = 5 nm InAs HEMTs: t ch = 5 nm 60 40 40 80 120 160 200 40 80 120 160 200 L g [nm] L g [nm] Kim, IPRM 2010 • Dramatic improvement in short-channel effects in thin-channel devices • Concern: v inj degradation in thin-channel devices? 3

  4. Extraction methodology for v inj v inj = I D I D = Q i_x0  v inj  Q i_x0 V G V G V S V S V D V D - I D : measured drain current I D I D - Q i_x0 : sheet-charge density R D R D R S R S Q i_x0 =  C gi dV GS,i Q i_x0 Q i_x0 with C gi @ V DS = 10 mV v x0 v x0 E C E C - C gi extracted from S-parameters inj - R S and R D correction: V DSi = V DS – I D  (R S + R D ) x x 0 0 L L V GSi = V GS – I D  R S x o x o - V T roll-off correction Kim, IEDM 2009 - DIBL correction 4

  5. Thin-channel I nAs HEMTs Kim, IPRM 2010 S D L g ~ 40 nm Oxide L side InGaAs/InAlAs t ch = 5 nm t ins = 7 nm 6 nm InP L g 11 nm In 0.52 Al 0.48 As t ins In 0.7 Ga 0.3 As: 1 nm t ch InAs: 2 nm t ch = 5 nm In 0.7 Ga 0.3 As: 2 nm  n,Hall = 9,950 cm 2 /V-sec Buffer : In 0.52 Al 0.48 As • Triple-step gate recess process Reference: • Gate metal stack: Ti/Pt/Au • InAs HEMT with t ch = 10 nm  n,Hall = 13,500 cm 2 /V-sec • L g = 40 ~ 200 nm • • L side = 80 nm, t ins = 3, 7 nm Kim, IEDM 2008 5

  6. I -V Characteristics: L g = 40 nm with t ins = 3 nm • V T = 0.11 V, S = 65 mV/dec, DIBL = 50 mV/V g m =1.6 mS/  m, R S =275 Ohm-  m • 6

  7. Extraction of Q i_x0 • C gi extracted from S-parameters @ V DS = 10 mV • Parasitic capacitance removed Q i_x0 =  C gi dV GS,i • V DS = 10 mV 7

  8. v inj of L g = 40 nm t ins = 3 nm I nAs HEMTs 4 V DS = 0.5 V v inj =3.3x10 7 cm/s @ 0.5 V 3 7 cm/s] V DS = 0.4 V 2  inj [10 V DS = 0.3 V 1 V DS = 0.1 V tins = 3 nm 0 0.0 0.1 0.2 0.3 0.4 V GSi - V T [v] V DS   v inj  (device driven into saturation) • V GSi -V T   v inj initially  (because Q i_xo  ) • then v inj  (device driven into linear regime)  8

  9. v inj vs. L g 4 L g = 40 nm L g = 70 nm 3 7 cm/s] L g = 100 nm L g = 150 nm 2 v inj [10 L g = 200 nm 1 t ins = 3 nm, V DS = 0.5 V 0 0.0 0.1 0.2 0.3 0.4 V GSi - V T [v] L g   v inj  9

  10. v inj - impact of channel thickness 4 VDS = 0.5 V 2 /V-s  n ~ 13,000 cm t ins = 4 nm & t ch = 10 nm 2 /V-s  n ~ 9,950 cm 3 Kim, IEDM 2009 t ins = 3 nm & t ch = 5 nm 7 cm/s] 2 v inj [10 1 Strain-Si Si nFETs (VDS = 1.1 ~ 1.3 V) 0 10 100 L g [nm] In thin-channel devices: Long L g : v inj decreases right along with  e (~23%) • • Short L g : v inj relatively unaffected  consistent with ballistic transport 10

  11. Conclusions • Thin-channel InAs HEMTs with t ch =5 nm: - Evidence of mobility degradation - Small degradation in injection velocity for short L g FETs: v inj = 3.3  10 7 cm/s at L g = 40 nm • Great scaling potential of thin-channel FETs • Key question: - Can v inj be preserved if severe  degradation (~3000 cm 2 /V.s)? 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend