hypercyclic n linear operators
play

Hypercyclic N-linear operators Preliminary work, with Alberto - PowerPoint PPT Presentation

Hypercyclic N-linear operators Preliminary work, with Alberto Conejero (Univ. Polit ecnica de Valencia) Juan B` es Bowling Green State University Hypercyclic N-linear operators Greetings from Alberto Conejero Hypercyclic N-linear operators


  1. Hypercyclic N-linear operators Preliminary work, with Alberto Conejero (Univ. Polit´ ecnica de Valencia) Juan B` es Bowling Green State University Hypercyclic N-linear operators

  2. Greetings from Alberto Conejero Hypercyclic N-linear operators

  3. Theorem (N. Bernardes, 1998) No homogeneous polynomial of degree d ≥ 2 on a Banach space can be hypercyclic. Recall that a homogenous polynomial P of degree 2 is given by P ( x ) = L ( x , x ) , x ∈ X , where L : X × X → X is a continuous bilinear map. And a polynomial P is said to be hypercyclic if it has a dense orbit { P n ( x ) : n ≥ 0 } . Hypercyclic N-linear operators

  4. If we drop the homogeneity requirement, F. Mart´ ınez-Gim´ enez, A. Peris (2009): Every separable, infinite dimensional Fr´ echet space supports non-homogeneous mixing polynomials of any positive degree. N. Bernardes, A. Peris (2014): If the Fr´ echet space has an unconditional basis, then it has non-homogeneous polynomials that are frequently hypercyclic and chaotic. Hypercyclic N-linear operators

  5. We are interested in the new direction started by K.-G. Grosse-Erdmann and S. G. Kim (2013): Instead of looking at the homogeneous polynomial P , they considered the underlying bilinear mapping ( x , y ) �→ L ( x , y ) Question: Can a bilinear mapping be ’hypercyclic’, that is, have a dense ’orbit’? What is the ’orbit’ of a bilinear mapping? Hypercyclic N-linear operators

  6. We are interested in the new direction started by K.-G. Grosse-Erdmann and S. G. Kim (2013): Instead of looking at the homogeneous polynomial P , they considered the underlying bilinear mapping ( x , y ) �→ L ( x , y ) Question: Can a bilinear mapping be ’hypercyclic’, that is, have a dense ’orbit’? What is the ’orbit’ of a bilinear mapping? Hypercyclic N-linear operators

  7. For a linear map T : X → X and x ∈ X , Orb( x , T ) = { x , Tx , T 2 x , . . . } = { x } ∪ { x , Tx } ∪ { x , Tx , T 2 x } ∪ . . . Definition. (K.-G. Grosse-Erdmann, S. G. Kim, ’13) For a bilinear map L : X × X → X and ( x , y ) ∈ X × X , let Orb(( x , y ) , L ) = { x , y } ∪ { x , y , L ( x , x ) , L ( x , y ) , L ( y , x ) , L ( y , y ) } ∪ . . . = ∪ ∞ n =0 U n , where U 0 = { x , y } and U n := U n − 1 ∪ { L ( u , v ) : u , v ∈ U n − 1 } , n ≥ 1. L is bihypercyclic provided Orb(( x , y ) , L ) = X for some ( x , y ) ∈ X × X . Such ( x , y ) is called a bihypercyclic pair for L . Hypercyclic N-linear operators

  8. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  9. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  10. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  11. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  12. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  13. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  14. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  15. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  16. Example. Is L : C × C → C , L ( x , y ) = xy , bihypercyclic? For x , y ∈ C Orb(( x , y ) , L ) = { x , y , x 2 , xy , y 2 , x 3 , x 2 y , xy 2 , y 3 , . . . , y 4 , . . . } = { x k y m } k , m ≥ 1 So the hypercyclicy follows by (N. Feldman, 2008) For each n ≥ 1, there are complex numbers a 1 , . . . , a n , b 1 , . . . , b n such that the set of vectors     a k 1 b k 1  1     a k 2 b k 2      2   is dense in C n . .   .  .          a k n b k n n k , k 1 , k 2 ,..., k n ≥ 1 In general, Grosse-Erdmann & Kim, 2013: Each K n has bihypercyclic operators. Hypercyclic N-linear operators

  17. Example (Grosse-Erdmann and Kim) Suppose there exists x ∈ X so that T := L ( x , · ) : X → X is hypercyclic, with a hypercyclic vector y . Then ( x , y ) is a bihypercyclic pair for L . In fact, Ty = L ( x , y ) , T 2 y = L ( x , Ty ) = L ( x , L ( x , y )) , T 3 y = L ( x , T 2 y ) = L ( x , L ( x , L ( x , y ))) , . . . So Orb( T , y ) ⊂ Orb(( x , y ) , L ) � Theorem (Grosse-Erdmann and Kim) Every separable Banach space suports a bihypercyclic bilinear operator. If dim( X ) = ∞ , get T a hypercyclic operator on X , and any 0 � = x ∗ ∈ X ∗ . Then L := x ∗ ⊗ T , ( x , y ) �→ x ∗ ( x ) T ( y ) is bihypercyclic. Hypercyclic N-linear operators

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend