how robust are stratospheric h 2 o and aoa trends derived
play

How robust are stratospheric H 2 O and AoA trends derived from - PowerPoint PPT Presentation

How robust are stratospheric H 2 O and AoA trends derived from different re-analysis products? Paul Konopka, Felix Ploeger, Bernard Legras, Mengchu Tao, Liuba Poshyvailo, Xiaolu Yan, Jonathon Wright, Rolf M uller and Martin Riese


  1. How robust are stratospheric H 2 O and AoA trends derived from different re-analysis products? Paul Konopka, Felix Ploeger, Bernard Legras, Mengchu Tao, Liuba Poshyvailo, Xiaolu Yan, Jonathon Wright, Rolf M¨ uller and Martin Riese Forschungszentrum J¨ ulich, Germany, Institute for Energy and Climate Research - Stratosphere (IEK-7) P .Konopka@fz-juelich.de http://www2.fz-juelich.de/icg/icg-i/www export/p.konopka .

  2. Outline CLaMS - Lagrangian Chemistry Transport Model (Lagrangian mixing, diabatic heating rates) ERA-Interim versus JRA-55 (1979-2013) Stratospheric water vapor Mean age of air (AoA) and the Brewer-Dobson circulation Conclusions

  3. CLaMS - Lagrangian Chemistry Transport Model with ≈ 10 6 air parcels air parcel = “pivotal point with mixing ratios µ i , of m species with i = 1 , ..., m ” Atmosphere below 0.1 hPa is resolved, 100km/400 m – hor./vert. resolution Horizontal meteor. winds (ERA-Interim, JRA55, NCEP) Vertical velocity: diabatic heating rates from radiation, latent heat rather than from ˙ p �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� Trajectory �� �� �� �� �� �� �� �� �� �� �� �� Chemistry �� �� �� �� �� �� �� �� Sedimentation Mixing �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� 3-D forward trajectories �� �� �� �� �� �� �� �� �� �� and Lagrangian mixing �� �� �� �� simplified chemistry and dehydration scheme McKenna et al., JGR, 2002, Konopka et al., JGR, 2004, Grooß et al., 2005, ACP , Konopka et al., 2007, ACP , Ploeger et al., 2010, 2013 JGR, Pommrich et al., 2014, GMD Greenland from space shuttle (NASA)

  4. species lower boundary upper boundary ( ∼ 50 km) CH 4 CMDL/AIRS HALOE - HALOE - Climatology: Mean Age linear source MIPAS (SF6) Grooss and Russell, ACP , 2005 - CMDL: GLOBALVIEW, 2015 CO 2 CMDL Mean Age CO 2 /CH 4 /CO since 1979/84/91 CO MOPITT/AIRS Mainz-2D P . Tans, K. Masarie, P . Novelli - CMDL: CATS (5 stations) O 3 0 HALOE, θ ≥ 500 K N 2 O, F11, F12 - J. Elkins O 3 (tracer) 0 HALOE, θ ≥ 500 K - MIPAS, SF6-Age Stiller et al., ACP , 2008 HCl 0 HALOE, θ ≥ 500 K - MOPITT (V3, V4)/AIRS H 2 O ECMWF , ζ ≤ 250 K HALOE Pommrich at al., GMD, 2014 - HCN N 2 O, F11,F12 CMDL 0 Pommrich at al., GRL, 2010 HCN MODIS 0 Simplified chemistry CH 4 ⇒ (OH, O( 1 D), Cl) ⇒ H 2 O, CO ⇒ (OH) ⇒ CO 2 (h ν ) ⇒ O 3 ⇒ (HO x ) ⇒ , N 2 O, F11, F12 ⇒ (O( 1 D), h ν ) ⇒ HCN ⇒ (OH, O( 3 D), uptake by the ocean) ⇒ Multi-annual CLaMS simulations (1979-today)

  5. Lagrangian mixing and transport barriers Hoppe et al, GMD, 2014 Southern Hemisphere winter: Antarctic vortex edge as N 2 O gradient (in pppbv/m) at θ = 450 K. Eulerian (EMAC-FFSL, Lin and Rood, 1996) ver- sus Lagrangian transport (CLaMS) versus MLS climatology at θ = 450 K in September. ⇒ more realistic transport barrier in CLaMS

  6. ...diabatic thinking

  7. diabatic rather than kinematic vert. velocities potential temperature θ defines the vertical coordinate Cross isentropic velocity ˙ θ derived from the ERA-Interim forecast total diabatic heating (long- and shortwave radiation with clouds + latent heat +,..., see Ploeger et al., 2010) + annually averaged mass conservation (Rosenlof et al., JGR, 1995) ⇒ σ - θ , hybride ζ -coordinate (Mahowald et al., JGR, 2002)

  8. diabatic rather than kinematic vert. velocities potential temperature θ defines the vertical coordinate Cross isentropic velocity ˙ θ derived from the ERA-Interim forecast total diabatic heating (long- and shortwave radiation with clouds + latent heat +,..., see Ploeger et al., 2010) + annually averaged mass conservation (Rosenlof et al., JGR, 1995) ⇒ σ - θ , hybride ζ -coordinate (Mahowald et al., JGR, 2002) θ [K] =p/p σ p [hPa] Subtropical Jet s 380 above 300 hPa ζ = θ (pot. Temp.) 100 dζ dt = dθ dt 0.12 360 200 340 0.25 310 300 0.40 280 500 0.80 1.00 1013 [deg N] 10 30 50 70

  9. diabatic rather than kinematic vert. velocities potential temperature θ defines the vertical coordinate Cross isentropic velocity ˙ θ derived from the ERA-Interim forecast total diabatic heating (long- and shortwave radiation with clouds + latent heat +,..., see Ploeger et al., 2010) + annually averaged mass conservation (Rosenlof et al., JGR, 1995) ⇒ σ - θ , hybride ζ -coordinate (Mahowald et al., JGR, 2002) θ [K] =p/p σ p [hPa] Subtropical Jet s 380 above 300 hPa ζ = θ (pot. Temp.) 100 dζ dt = dθ dt 0.12 360 200 340 0.25 310 300 0.40 280 below 300 hPa 500 ζ ∼ σ = p/p s , dζ dt = ˙ σ 0.80 p s - surf. pressure 1.00 1013 [deg N] 10 30 50 70

  10. Diabatic versus kinematic 420 410 400 θ [K] Trajectory-based reconstruction of O 3 diabatic significantly better than kinematic but why ? (from Ploeger et al., ACP , 2011) 390 HALOE FOZAN ERA−Int. assim 380 kinematic diabatic 370 200. 400. 600. 0.0 O 3 [ppbv]

  11. Diabatic versus kinematic isen_model/KIN 420 410 400 ZETA [K] 390 diabatic 380 isen_model/DIA 420 370 era_interim 410 360 −50 0 50 Latitude, deg N 400 kinematic ZETA [K] 390 380 ...because diabatic approach is less dispersive, mainly due to assimilation 370 errors in the ˙ σ ≈ dp/dt fields ! era_interim 360 (Eluszkiewicz et al, 2000, Schoeberl −50 0 50 et al., 2003, 2005, Diallo et al., 2012) Latitude, deg N

  12. H 2 O-taperecorder H 2 O (ppmv) MLS (HALOE) MLS (HALOE) 600 600 6.0 3 0 5.5 Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 5.0 40 500 500 4.5 50 4.0 MLS climatology, 2005 -12 450 450 3.5 white line - HALOE 70 3.0 400 400 2.5 1 0 0 350 350 2.0 J J F F M M A A M M J J J J A A S S O O N N D D Month Month

  13. H 2 O-taperecorder ERA−Interim ERA−Interim ERA-Interim climatology, ± 15 N, 2002-12 600 600 3 0 (-) sligthly too dry during winter/spiring Potential Temperature, θ , [K] Potential Temperature, θ , [K] (-) slightly too wet during summer 550 550 (Fueglistaler et al., JGR, 2013) 40 500 500 (-) ...but much too fast tropical upwelling ! 50 (Dee et al, QJRMS, 2011) 450 450 70 400 400 H 2 O (ppmv) MLS (HALOE) MLS (HALOE) 600 600 1 0 0 6.0 3 0 350 350 J J F F M M A A M M J J J J A A S S O O N N D D 5.5 Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 Month Month 5.0 40 500 500 4.5 50 4.0 MLS climatology, 2005 -12 450 450 3.5 white line - HALOE 70 3.0 400 400 2.5 1 0 0 350 350 2.0 J J F F M M A A M M J J J J A A S S O O N N D D Month Month

  14. ...and from CLaMS (diabatic transport) CLaMS 2002−12 CLaMS 2002−12 600 600 CLaMS climatology, ± 15 N, 2002-12 3 0 ...tropical upwelling is much better represented Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 (diabatic heating rates from ERA-Interim) 40 500 500 50 450 450 70 400 400 H 2 O (ppmv) MLS (HALOE) MLS (HALOE) 600 600 1 0 0 6.0 3 0 350 350 J J F F M M A A M M J J J J A A S S O O N N D D 5.5 Potential Temperature, θ , [K] Potential Temperature, θ , [K] 550 550 Month Month 5.0 40 500 500 4.5 50 4.0 MLS climatology, 2005 -12 450 450 3.5 white line - HALOE 70 3.0 400 400 2.5 1 0 0 350 350 2.0 J J F F M M A A M M J J J J A A S S O O N N D D Month Month

  15. How robust are CLaMS simulations with respect to the used re -analysis ? (diabatic heating rates)

  16. Zonal mean diabatic heating (2001 -10) from different reanalisis products: top - total, middle - radiation, bottom - residuum (laten heat + ..), Wright and Fueglistaler, ACP , 2013

  17. Zonal mean diabatic heating (2001 -10) from different reanalisis products: top - total, middle Zonal mean diabatic heating (2001-10) from different reanalisis products: top - total, middle - radiation, bottom - residuum (laten heat + ..), Wright and Fueglistaler, ACP - radiation, bottom - residuum (laten heat + ..), Wright and Fueglistaler, ACP , 2013 , 2013

  18. H 2 O/AoA from CLaMS driven by: ERA -Interim (Dee et al, 2011) JRA-55 (Kobayashi et al, 2015)

  19. Linear trends (35 years) adapted from Tao et al., 2015, with added JRA -related analysis CLaMS_ERA HALOE MW during eQBO CLaMS_JRA MLS MW during wQBO 1.0 1.0 H2O [ppmv] H2O [ppmv] 0.5 0.5 0.0 0.0 −0.5 −0.5 −1.0 −1.0 4 4 2 2 Age [month] Age [month] 0 0 −2 −2 −4 −4 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 TIME [year] Evolution of H 2 O (top) and of the mean age of air AoA (bottom) in the tropics ( ± 10 N) at θ = 400 K ( 18km) shown as the deseasonalized anomaly with respect to the 35 year climatology (15 days running mean).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend