holographic zero sound from spacetime filling branes
play

Holographic zero sound from spacetime filling branes Ronnie Rodgers - PowerPoint PPT Presentation

Holographic zero sound from spacetime filling branes Ronnie Rodgers With Nikola Gushterov and Andy OBannon Based on arXiv:1807.11327 Outline Background and motivation - Fermi liquids - Holographic zero sound The model Results Summary


  1. Holographic zero sound from spacetime filling branes Ronnie Rodgers With Nikola Gushterov and Andy O’Bannon Based on arXiv:1807.11327

  2. Outline Background and motivation - Fermi liquids - Holographic zero sound The model Results Summary and outlook

  3. AdS/CMT Gauge/gravity duality: Strongly coupled QFTs ⇔ Weakly coupled gravity theories Playground for strongly coupled physics without a quasiparticle description No quantitative predictions, but one can try to identify universal qualitative phenomena 2

  4. Fermi liquids System of fermions: adiabatically turn on repulsive interactions Landau theory: effective description of low-energy excitations in terms of quasiparticles Fermi liquids in nature: • Helium-3 • Electron sea in metals Useful reference point for understanding non-Fermi liquids (strange metals) 3

  5. Zero sound in Fermi liquids δn p ( t, x ) quasiparticles per unit momentum p Boltzmann equation: ∂δn p + v p · ∇ δn p + interactions = collisions ∂t 4

  6. Zero sound in Fermi liquids δn p ( t, x ) quasiparticles per unit momentum p Boltzmann equation: ∂δn p + v p · ∇ δn p + interactions = collisions ∂t Low temperature: neglect collisions Solution: “zero sound” ω = ± vk − i Γ k 2 + O ( k 3 ) Non-isotropic deformation of Fermi surface 4

  7. Properties of zero sound Speed v ≥ speed of sound v s 3.0 2.5 2.0 1.5 1.0 Zero sound 0.5 First sound 0.0 0 5 10 15 20 25 5

  8. Properties of zero sound Speed v ≥ speed of sound v s π 2 T 2 + ω 2 Quasiparticle scattering rate: ν ∼ µ (1 − e − ω/T ) Dial up temperature, attenuation: • Quantum collisionless, T ≪ ω , Γ ∼ T 0 • Thermal collisionless, T 2 /µ ≪ ω ≪ T , Γ ∼ T 2 Hydrodynamic sound, ω ≪ T 2 /µ, Γ ∼ T − 2 Zero sound → hydrodynamic sound as temperature increases 5

  9. (Zero) sound attenuation Maximum defines collisionless-to-hydrodynamic crossover 6

  10. (Zero) sound attenuation Zero sound attenuation in Helium-3 [Abel, Anderson, Wheatley, Phys. Rev. Lett. 17 (Jul, 1966) 74-78] 7

  11. Holographic zero sound Holographic models with bulk gauge field. Dual field theory: • U (1) global symmetry • Non-zero chemical potential µ , charge density � J t � • Compressible, d � J t � / d µ � = 0 8

  12. Holographic zero sound Holographic models with bulk gauge field. Dual field theory: • U (1) global symmetry • Non-zero chemical potential µ , charge density � J t � • Compressible, d � J t � / d µ � = 0 Spectrum of collective excitations (quasinormal modes) includes low-temperature longitudinal modes with sound-like dispersion ω = ± vk − i Γ k 2 + O ( k 3 ) “Holographic zero sound” (HZS) Poles in two-point functions of T µν and J µ 8

  13. HZS from probe branes Probe D q -branes with worldvolume ⊃ AdS p +1 factor [Karch, Son, Starinets, 0806.3796; Davison, Starinets, 1109.6343] Action � d p +2 ξ � S = S EH − T q − det( g + 2 πα ′ F ) Probe limit G N L 2 T q ≪ 1 – no back-reaction Non-zero electric field A 0 = A 0 ( z ) ⇒ chemical potential µ At T = 0 , QNMs √ p − ik 2 ω = ± k 2 pµ + O ( k 3 ) Pole in � JJ � correlators 9

  14. HZS from probe branes Probe D q -branes with worldvolume ⊃ AdS p +1 factor [Karch, Son, Starinets, 0806.3796; Davison, Starinets, 1109.6343] Attenuation, e.g. p = 2 : - 7.5 - 8.0 - 8.5 - 9.0 - 9.5 - 10.0 - 10.5 - 11.0 - 8 - 7 - 6 - 5 - 4 - 3 10

  15. ⨯ ⨯ ■ ■ ■ ⨯ ■ ⨯ ⨯ ■ ■ ⨯ ⨯ ⨯ ⨯ ⨯ ■ ■ ■ HZS from probe branes Probe D q -branes with worldvolume ⊃ AdS p +1 factor [Karch, Son, Starinets, 0806.3796; Davison, Starinets, 1109.6343] T > 0 0 ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ Crossover to hydrodynamics when poles collide 11

  16. HZS in Einstein-Maxell U (1) gauge field minimally coupled to gravity [Edalati, Jottar, Leigh, 1005.4075; Davison, Kaplis, 1111.0660] 1 � � R + d ( d − 1) � d d +1 x � − L 2 F 2 S = − det g 16 πG N L 2 AdS-Reissner-Nordstr¨ om solution: Non-zero electric field A 0 = A 0 ( z ) ⇒ chemical potential µ Low temperature pole in � JJ � and � TT � of form ω = ± vk − i Γ k 2 + O ( k 3 ) Continuously becomes hydrodynamic sound at higher temperatures 12

  17. ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ HZS in Einstein-Maxell U (1) gauge field minimally coupled to gravity [Edalati, Jottar, Leigh, 1005.4075; Davison, Kaplis, 1111.0660] Attenuation, d = 3 - 11.6 - 11.8 ⨯ ⨯⨯⨯ ⨯⨯⨯ - 12.0 - 12.2 - 12.4 - 12.6 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 Small maximum – crossover? 13

  18. ⨯ ⨯ ■ ⨯ ⨯ HZS in Einstein-Maxell U (1) gauge field minimally coupled to gravity [Edalati, Jottar, Leigh, 1005.4075; Davison, Kaplis, 1111.0660] 0 No pole collision 14

  19. What is the HZS mode? These systems are not Fermi liquids: Einstein-Maxwell models can have Fermi surface [Liu, McGreevy, Vegh, 0903.2477; Cubrovic, Zaanen, Schalm, 0904.1993] But at T = 0 : near horizon AdS 2 ⇒ emergent scaling symmetry [Faulkner, Liu, McGreevy, Vegh, 0907.2694] Probe branes: • No evidence for Fermi surface • C ∼ T 2 p No symmetry breaking ⇒ not (superfluid) phonon 15

  20. What is the HZS mode? These systems are not Fermi liquids: Einstein-Maxwell models can have Fermi surface [Liu, McGreevy, Vegh, 0903.2477; Cubrovic, Zaanen, Schalm, 0904.1993] But at T = 0 : near horizon AdS 2 ⇒ emergent scaling symmetry [Faulkner, Liu, McGreevy, Vegh, 0907.2694] Probe branes: • No evidence for Fermi surface • C ∼ T 2 p No symmetry breaking ⇒ not (superfluid) phonon Properties of HZS show significant qualitative differences between the two models – why? What effective theories support zero sound? 15

  21. Outline Background and motivation - Fermi liquids - Holographic zero sound The model Results Summary and outlook

  22. Model Spacetime filling brane with back-reaction 1 � � R + d ( d − 1) � � d 4 x S = − det g L 2 16 πG N 0 � d 4 x � − T D − det( g + αF ) Admits charged black brane solutions: (2+1)-dimensional boundary CFT at T and µ 17

  23. Model Spacetime filling brane with back-reaction 1 � � R + d ( d − 1) � � d 4 x S = − det g L 2 16 πG N 0 � d 4 x � − T D − det( g + αF ) Admits charged black brane solutions: (2+1)-dimensional boundary CFT at T and µ Define 3 L 2 L 2 = 0 τ = 8 πG N L 2 T D , α = α/L 2 , ˜ 3 − 8 πG N T D L 2 0 τ ∼ N f /N c number of flavours in CFT α measures non-linearity of interaction ˜ Probe DBI and Einstein-Maxwell appear as limits 17

  24. Plan Study the collective excitations in this setup • How does zero sound depend on parameters of the model? • How do we recover previous regimes For this talk: ˜ α = 1 , vary τ We have also computed spectral functions 18

  25. Outline Background and motivation - Fermi liquids - Holographic zero sound The model Results Summary and outlook

  26.                              ⨯                 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■  ■     ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■   ■ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯  ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯   ⨯         ⨯⨯         ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ ■ Motion of poles τ = 0 , ˜ α = 1 , k/µ = 0 . 01 0.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.0 - 0.5 0.0 0.5 1.0 20

  27. τ = 10 − 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend