higher spin fields on curved spacetimes
play

Higher Spin Fields on Curved Spacetimes Rainer M uhlhoff Institut - PowerPoint PPT Presentation

Statement of Buchdahls Equations Solving the Cauchy Problem Quantisation Summary Higher Spin Fields on Curved Spacetimes Rainer M uhlhoff Institut f ur Theoretische Physik Universit at Leipzig 22nd Workshop Foundations and


  1. Statement of Buchdahl’s Equations Solving the Cauchy Problem Quantisation Summary Higher Spin Fields on Curved Spacetimes Rainer M¨ uhlhoff Institut f¨ ur Theoretische Physik Universit¨ at Leipzig 22nd Workshop “Foundations and Constructive Aspects of QFT” Hamburg, June 6th–7th, 2008 Rainer M¨ uhlhoff Higher Spin Fields

  2. Statement of Buchdahl’s Equations Solving the Cauchy Problem Quantisation Summary Outline 1 Statement of Buchdahl’s Equations History Spinors and Representation Theory Buchdahl’s Equation and W¨ unsch’s Version of it 2 Solving the Cauchy Problem A General Solution Theorem Cauchy Problem for Buchdahl’s Equations 3 Quantisation Outline of the Procedure Generalisation of the (Dimock 1982) spin 1 2 construction Quantisation in Illge’s framework 4 Summary Rainer M¨ uhlhoff Higher Spin Fields

  3. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Generalised Dirac Equations – History On flat Minkowski spacetime, [Dirac 1936]: � ∂ A X 0 ψ AA 1 ... A k ˙ X l + µ ϕ A 1 ... A k ˙ X l = 0 X 1 ... ˙ X 0 ... ˙ ˙ ∂ ˙ X A 0 ϕ A 1 ... A k ˙ X l − ν ψ A 0 ... A k ˙ X l = 0 , X ˙ X 1 ... ˙ X 1 ... ˙ Naive minimal coupling to gravitation: � ∇ A X 0 ψ AA 1 ... A k ˙ X l + µ ϕ A 1 ... A k ˙ X l = 0 X 1 ... ˙ X 0 ... ˙ ˙ ∇ ˙ X A 0 ϕ A 1 ... A k ˙ X l − ν ψ A 0 ... A k ˙ X l = 0 . X ˙ X 1 ... ˙ X 1 ... ˙ Problem [Buchdahl 1962] Inconsistent for k + l > 1. Rainer M¨ uhlhoff Higher Spin Fields

  4. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Buchdahl’s equation Buchdahl’s 1982 modification for spin s 2 : ( ∇ A ˙ A 1 ... A s − 1 A 3 ... A s − 1 ) − νψ AA 1 ... A s − 1 = 0 X ϕ − ( s − 1)( s − 2) ǫ A ( A 1 Ψ | PQD | A 2 ψ ˙ µ s PQD X A 1 ... A s − 1 XA ψ AA 1 ... A s − 1 − µϕ ∇ ˙ = 0 ˙ X Consistent for all s ∈ ◆ and µ � = 0 for symmetric spinor fields (massive fields) ψ AA 1 ... A s − 1 = ψ ( AA 1 ... A s − 1 ) Violation of minimal A 1 ... A s − 1 ( A 1 ... A s − 1 ) ϕ = ϕ coupling principal? ˙ ˙ X X Operator notation: „ − 1 « ! \ µ − P s ∇− ν ψ 1st order = 0 / ∇ − µ ϕ 0st order ∇ ψ ) A 1 ... A s − 1 XA ψ AA 1 ... A s − 1 ( / := / ∇ ˙ ˙ X A ˙ X ψ A 1 ... A s − 1 ∇ ψ ) AA 1 ... A s − 1 := \ ( \ ∇ ˙ X ( P s ϕ ) AA 1 ... A s − 1 := ( s − 1)( s − 2) A 3 ... A s − 1 ) ǫ A ( A 1 Ψ | PQD | A 2 ϕ PQD s Rainer M¨ uhlhoff Higher Spin Fields

  5. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Geometric Setting Underlying manifold By a spacetime manifold ( M , g ), we mean a time-oriented and space-oriented, globally hyperbolic, 4-dimensional Lorentzian manifold of signature (+ − −− ). This implies that ( M , g ) is oriented and connected, satisfies the strong Causality condition, has a (potentially non unique) spin structure S ( M ). Rainer M¨ uhlhoff Higher Spin Fields

  6. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary SU (2)-representations Notation Irreducible complex SU (2)-representations: D ( j ) : SU (2) → Aut (∆ j ) with j ∈ { 0 , 1 2 , 1 , 3 2 , . . . } “spin number” ∆ j ❈ -vector space, dim ❈ (∆ j ) = 2 j + 1 Symmetric tensor products are irreducible D ( 1 2 ) is the fundamental representation. D ( j ) = ( D ( 1 2 ) ) ∨ 2 j = D ( 1 2 ) ∨ . . . ∨ D ( 1 2 ) ∆ j = (∆ j ) ∨ 2 j . on Rainer M¨ uhlhoff Higher Spin Fields

  7. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary SL (2 , ❈ )-representation theory I Theorem (irreducible SL (2 , ❈ )-representations) Finite dimensional complex irreducible SL (2 , ❈ )-representations are (up to equivalence) of the form D ( j , j ′ ) := D ( j ) D ( j ′ ) ⊗ ¯ ∆ j , j ′ := ∆ j ⊗ ¯ on ∆ j ′ c c for spin numbers j , j ′ ∈ { 0 , 1 2 , 1 , 3 2 , . . . } . Notice: dim(∆ j , j ′ ) = (2 j + 1)(2 j ′ + 1) . Notation – extension of D ( j ) to SL (2 , ❈ ). D ( j ) c D ( j ) – complex conjugate of D ( j ) ¯ c c Rainer M¨ uhlhoff Higher Spin Fields

  8. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary SL (2 , ❈ )-representation theory II Symmetric tensor products SL (2 , ❈ ) has two fundamental representations: D ( 1 D (0 , 1 2 , 0) 2 ) and Symmetrised tensor products are irreducible: D ( j , j ′ ) = ( D ( 1 2 , 0) ) ∨ 2 j ⊗ ( D (0 , 1 2 ) ) ∨ 2 j ′ 2 ) ∨ 2 j ′ . 2 , 0 ) ∨ 2 j ⊗ (∆ 0 , 1 on ∆ j , j ′ := (∆ 1 Rainer M¨ uhlhoff Higher Spin Fields

  9. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary SL (2 , ❈ )-spinors Abstract index notation for 2-spinors ϕ A 1 ... A p ˙ X 1 ... ˙ 2 , 0 ) ⊗ p ⊗ (∆ 0 , 1 X q ∈ (∆ 1 2 ) ⊗ q ( p , q )-spinors: 2 , 0 ) ⊗ p ⊗ (∆ ∗ X q ∈ (∆ ∗ 2 ) ⊗ q ( p , q )-co-spinors: ψ A 1 ... A p ˙ X 1 ... ˙ 1 0 , 1 Spinors on spacetime manifold ( M , g ) Spin structure S ( M ) is principal SL (2 , ❈ )-bundle with induced connection. We have the following associated vector bundles: Bundle of ( p , q )-spinors: D ( p , q ) M bundle of ( p , q )-co-spinors: D ( p , q ) ∗ M . Rainer M¨ uhlhoff Higher Spin Fields

  10. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Symmetric Spinors Spinors on spacetime manifold ( M , g ) Covariant derivatives on D ( p , q ) M : ∇ ( p , q ) : Γ( TM ) ⊗ Γ( D ( p , q ) M ) → Γ( D ( p , q ) M ) are compatible, i. e. ∇ ( p , q ) ( T × S ) = ∇ ( p , 0) S ⊗ T + S ⊗ ∇ (0 , q ) T a a a ∇ a ǫ AB = 0 , ∇ a σ A ˙ X = 0 b Caution (symmetry and irreducibility again) ϕ A 1 ... A p ˙ X 1 ... ˙ X q is element of an irreducible SL (2 , ❈ )-representation ϕ A 1 ... A p ˙ X 1 ... ˙ X q = ϕ ( A 1 ... A p )( ˙ X 1 ... ˙ X q ) ⇔ 2 , 0 ) ⊗ 2 j ⊗ (∆ 0 , 1 2 ) ⊗ 2 j ′ Thus: ∆ j , j ′ � (∆ 1 Rainer M¨ uhlhoff Higher Spin Fields

  11. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Buchdahl’s equation Buchdahl’s 1982 modification for spin s 2 : ( ∇ A ˙ A 1 ... A s − 1 A 3 ... A s − 1 ) − ( s − 1)( s − 2) − νψ AA 1 ... A s − 1 = 0 X ϕ ǫ A ( A 1 Ψ | PQD | A 2 ψ ˙ PQD X µ s XA ψ AA 1 ... A s − 1 − µϕ A 1 ... A s − 1 ∇ ˙ = 0 ˙ X Consistent for all s ∈ ◆ and µ � = 0 for symmetric spinor fields (massive fields) ψ AA 1 ... A s − 1 = ψ ( AA 1 ... A s − 1 ) Violation of minimal A 1 ... A s − 1 ( A 1 ... A s − 1 ) ϕ = ϕ coupling principal? ˙ ˙ X X Operator notation: „ − 1 « ! µ − P s ∇− ν \ ψ 1st order = 0 ∇ / − µ 0st order ϕ ∇ ψ ) A 1 ... A s − 1 ( / := / XA ψ AA 1 ... A s − 1 ∇ ˙ ˙ X A ˙ ∇ ψ ) AA 1 ... A s − 1 := \ X ψ A 1 ... A s − 1 ( \ ∇ ˙ X ( P s ϕ ) AA 1 ... A s − 1 := ( s − 1)( s − 2) A 3 ... A s − 1 ) ǫ A ( A 1 Ψ | PQD | A 2 ϕ s PQD Rainer M¨ uhlhoff Higher Spin Fields

  12. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Buchdahl-W¨ unsch equation Equivalent formulation by [W¨ unsch, 1985] 0 = ∇ A ˙ X ϕ A 1 ... A s − 1 − ν ψ AA 1 ... A s − 1 ˙ X XA ψ AA 1 ... A s − 1 − µ ϕ A 1 ... A s − 1 0 = ∇ ˙ ˙ X with µ, ν ∈ ❈ , µ � = 0, and = ϕ ( A 1 ... A s − 1 ) ψ AA 1 ... A s − 1 = ψ ( AA 1 ... A s − 1 ) ϕ A 1 ... A s − 1 and ˙ ˙ X X Why symmetrisation? Symmetrisation projects back onto the original irreducible SL (2 , ❈ )-representation. Rainer M¨ uhlhoff Higher Spin Fields

  13. Statement of Buchdahl’s Equations History Solving the Cauchy Problem Spinors and Representation Theory Quantisation Buchdahl’s Equation and W¨ unsch’s Version of it Summary Generalised Dirac Equations – History On flat Minkowski spacetime, [Dirac 1936]: � ∂ A X 0 ψ AA 1 ... A k ˙ X l + µ ϕ A 1 ... A k ˙ X l = 0 X 1 ... ˙ X 0 ... ˙ ˙ ∂ ˙ X A 0 ϕ A 1 ... A k ˙ X l − ν ψ A 0 ... A k ˙ X l = 0 , X ˙ X 1 ... ˙ X 1 ... ˙ Naive minimal coupling to gravitation: � ∇ A X 0 ψ AA 1 ... A k ˙ X l + µ ϕ A 1 ... A k ˙ X l = 0 X 1 ... ˙ X 0 ... ˙ ˙ ∇ ˙ X A 0 ϕ A 1 ... A k ˙ X l − ν ψ A 0 ... A k ˙ X l = 0 . X ˙ X 1 ... ˙ X 1 ... ˙ Problem [Buchdahl 1962] Inconsistent for k + l > 1. Rainer M¨ uhlhoff Higher Spin Fields

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend