parallel space time methods
play

Parallel Space-Time Methods M. Neum uller Special Semester - PowerPoint PPT Presentation

Institute of Computational Mathematics Parallel Space-Time Methods M. Neum uller Special Semester Space-Time Methods for PDEs Nov. 7 - 11, 2016 M. Neum uller Parallel Space-Time Methods Linz, Nov. 7, 2016 1 / 29 Institute of


  1. Institute of Computational Mathematics Parallel Space-Time Methods M. Neum¨ uller Special Semester Space-Time Methods for PDEs Nov. 7 - 11, 2016 M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 1 / 29

  2. Institute of Computational Mathematics Outline Model problem Space-time method Numerical analysis Numerical examples Solvers Standard solvers Space-time multigrid method Conclusions and outlook M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 2 / 29

  3. Institute of Computational Mathematics Model problem Heat equation: ∂ t u − ∆ u = f in Q := Ω × (0 , T ) , u = g D on Σ := ∂ Ω × (0 , T ) , u = u 0 on Σ 0 := Ω × { 0 } . t Σ T T Q Σ Σ x Σ 0 U. Langer, S.E. Moore and M.N., Space–time isogeometric analysis of parabolic evolution problems (2016) M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 3 / 29

  4. Institute of Computational Mathematics Outline Model problem Space-time method Numerical analysis Numerical examples Solvers Standard solvers Space-time multigrid method Conclusions and outlook M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 4 / 29

  5. Institute of Computational Mathematics IgA function space ◮ Parameter space-time domain: � Q := (0 , 1) d +1 ◮ Geometrical mapping: Φ : � Q → Q ˆ t Q t ˆ t t Q � T Q ˆ � n x � Q n t K 1 Φ − 1 T � K Φ − 1 1 x 2 ˆ x 2 Ω Φ Φ Ω � 0 0 0 0 x Ω 0 � 1 x ˆ Ω x 1 a 0 x 1 ˆ b 0 1 IgA function space: V p ϕ h , k = � h := span { ϕ h , k } k ⊂ C p − 1 ( Q ) R k , p ◦ Φ − 1 , with V p 0 h := { v h ∈ V p h : v h = 0 on Σ ∪ Σ 0 } . M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 5 / 29

  6. Institute of Computational Mathematics Variational formulation Let v h ∈ V p 0 h for p ≥ 2 and w h := v h + θ h ∂ t v h with θ > 0 . M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 6 / 29

  7. Institute of Computational Mathematics Variational formulation Let v h ∈ V p 0 h for p ≥ 2 and w h := v h + θ h ∂ t v h with θ > 0 . � � � f w h dxdt = ∂ t u w h dxdt − ∆ u w h dxdt Q Q Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 6 / 29

  8. Institute of Computational Mathematics Variational formulation Let v h ∈ V p 0 h for p ≥ 2 and w h := v h + θ h ∂ t v h with θ > 0 . � � � f w h dxdt = ∂ t u w h dxdt − ∆ u w h dxdt Q Q Q � � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt − n x · ∇ x u w h ds Q Q ∂ Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 6 / 29

  9. Institute of Computational Mathematics Variational formulation Let v h ∈ V p 0 h for p ≥ 2 and w h := v h + θ h ∂ t v h with θ > 0 . � � � f w h dxdt = ∂ t u w h dxdt − ∆ u w h dxdt Q Q Q � � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt − n x · ∇ x u w h ds Q Q ∂ Q � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt . Q Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 6 / 29

  10. Institute of Computational Mathematics Variational formulation Let v h ∈ V p 0 h for p ≥ 2 and w h := v h + θ h ∂ t v h with θ > 0 . � � � f w h dxdt = ∂ t u w h dxdt − ∆ u w h dxdt Q Q Q � � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt − n x · ∇ x u w h ds Q Q ∂ Q � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt . Q Q Bilinear form: � � a h ( u h , v h ) := ∂ t u h ( v h + θ h ∂ t v h ) dxdt + ∇ x u h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 6 / 29

  11. Institute of Computational Mathematics Variational formulation Let v h ∈ V p 0 h for p ≥ 2 and w h := v h + θ h ∂ t v h with θ > 0 . � � � f w h dxdt = ∂ t u w h dxdt − ∆ u w h dxdt Q Q Q � � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt − n x · ∇ x u w h ds Q Q ∂ Q � � = ∂ t u w h dxdt + ∇ x u · ∇ x w h dxdt . Q Q Bilinear form: � � a h ( u h , v h ) := ∂ t u h ( v h + θ h ∂ t v h ) dxdt + ∇ x u h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q Linear form: � l h ( v h ) := f ( v h + θ h ∂ t v h ) dxdt Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 6 / 29

  12. Institute of Computational Mathematics Variational formulation Find u h ∈ V g := g + V p 0 h with g = u 0 on Σ 0 and g = g D on Σ, such that for all v h ∈ V p a h ( u h , v h ) = l h ( v h ) 0 h . Discrete problem: Find u h = g + u 0 h with u 0 h ∈ V p 0 h , such that for all v h ∈ V p a h ( u 0 h , v h ) = l h ( v h ) − a h ( g , v h ) 0 h . M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 7 / 29

  13. Institute of Computational Mathematics Variational formulation Find u h ∈ V g := g + V p 0 h with g = u 0 on Σ 0 and g = g D on Σ, such that for all v h ∈ V p a h ( u h , v h ) = l h ( v h ) 0 h . Discrete problem: Find u h = g + u 0 h with u 0 h ∈ V p 0 h , such that for all v h ∈ V p a h ( u 0 h , v h ) = l h ( v h ) − a h ( g , v h ) 0 h . Bilinear form: � � a h ( u h , v h ) := ∂ t u h ( v h + θ h ∂ t v h ) dxdt + ∇ x u h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q Linear form: � l h ( v h ) := f ( v h + θ h ∂ t v h ) dxdt Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 7 / 29

  14. Institute of Computational Mathematics Coercivity For v h ∈ V p 0 h with p ≥ 2 we have � � a h ( v h , v h ) = ∂ t v h ( v h + θ h ∂ t v h ) dxdt + ∇ x v h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 8 / 29

  15. Institute of Computational Mathematics Coercivity For v h ∈ V p 0 h with p ≥ 2 we have � � a h ( v h , v h ) = ∂ t v h ( v h + θ h ∂ t v h ) dxdt + ∇ x v h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + ∂ t v h v h dxdt + θ h ∇ x v h · ∇ x ∂ t v h dxdt Q Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 8 / 29

  16. Institute of Computational Mathematics Coercivity For v h ∈ V p 0 h with p ≥ 2 we have � � a h ( v h , v h ) = ∂ t v h ( v h + θ h ∂ t v h ) dxdt + ∇ x v h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + ∂ t v h v h dxdt + θ h ∇ x v h · ∇ x ∂ t v h dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + 1 ∂ t ( v h ) 2 dxdt + θ h ∂ t |∇ x v h | 2 dxdt 2 2 Q Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 8 / 29

  17. Institute of Computational Mathematics Coercivity For v h ∈ V p 0 h with p ≥ 2 we have � � a h ( v h , v h ) = ∂ t v h ( v h + θ h ∂ t v h ) dxdt + ∇ x v h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + ∂ t v h v h dxdt + θ h ∇ x v h · ∇ x ∂ t v h dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + 1 ∂ t ( v h ) 2 dxdt + θ h ∂ t |∇ x v h | 2 dxdt 2 2 Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + 1 n t ( v h ) 2 ds + θ h n t |∇ x v h | 2 dxdt 2 2 ∂ Q ∂ Q M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 8 / 29

  18. Institute of Computational Mathematics Coercivity For v h ∈ V p 0 h with p ≥ 2 we have � � a h ( v h , v h ) = ∂ t v h ( v h + θ h ∂ t v h ) dxdt + ∇ x v h · ∇ x ( v h + θ h ∂ t v h ) dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + ∂ t v h v h dxdt + θ h ∇ x v h · ∇ x ∂ t v h dxdt Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + 1 ∂ t ( v h ) 2 dxdt + θ h ∂ t |∇ x v h | 2 dxdt 2 2 Q Q = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 L 2 ( Q ) � � + 1 n t ( v h ) 2 ds + θ h n t |∇ x v h | 2 dxdt 2 2 ∂ Q ∂ Q L 2 ( Q ) + 1 L 2 (Σ T ) + θ h = θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 2 � v h � 2 2 �∇ x v h � 2 L 2 (Σ T ) . M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 8 / 29

  19. Institute of Computational Mathematics Numerical analysis Coercivity: For v h ∈ V p 0 h we have L 2 ( Q ) + 1 a h ( v h , v h ) ≥ θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 2 � v h � 2 L 2 (Σ T ) := � v h � 2 h . M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 9 / 29

  20. Institute of Computational Mathematics Numerical analysis Coercivity: For v h ∈ V p 0 h we have L 2 ( Q ) + 1 a h ( v h , v h ) ≥ θ h � ∂ t v h � 2 L 2 ( Q ) + �∇ x v h � 2 2 � v h � 2 L 2 (Σ T ) := � v h � 2 h . Boundedness: For u ∈ H 2 , 1 ( Q ) + V p 0 h and v h ∈ V p 0 h we have a h ( u , v h ) ≤ µ b � u � h , ∗ � v h � h , with � u � 2 h , ∗ := � u � 2 h + ( θ h ) − 1 � v h � 2 L 2 ( Q ) . M. Neum¨ uller Parallel Space-Time Methods Linz, Nov. 7, 2016 9 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend