high accuracy analysis of compton scattering in chiral
play

High-Accuracy Analysis of Compton Scattering in Chiral EFT: Status - PowerPoint PPT Presentation

High-Accuracy Analysis of Compton Scattering in Chiral EFT: Status and Future H. W. Griehammer INS Institute for Nuclear Studies Institute for Nuclear Studies The George Washington University, DC, USA Two-Photon Response Explores Low-Energy


  1. High-Accuracy Analysis of Compton Scattering in Chiral EFT: Status and Future H. W. Grießhammer INS Institute for Nuclear Studies Institute for Nuclear Studies The George Washington University, DC, USA Two-Photon Response Explores Low-Energy Dynamics 1 Polarisabilities from Compton Scattering 2 a a The Future: Per Aspera Ad Astra 3 Concluding Questions 4 How do constituents of the nucleon react to external fields? How to reliably extract neutron and spin polarisabilities? Comprehensive Theory Effort: hg, J. A. McGovern (Manchester), D. R. Phillips (Ohio U): Eur. Phys. J. A49 (2013), 12 (proton) + G. Feldman (GW): Prog. Part. Nucl. Phys. 67 (2012) 841 neutron in C OMPTON @MAX-lab: Phys. Rev. Lett. 113 (2014) 262506 [1409.3705 [nucl-ex]] & subm. to PRC [1503.08094 [nucl-ex]] Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 0-1

  2. 1. Two-Photon Response Explores Low-Energy Dynamics (a) Polarisabilities: Stiffness of Charged Constituents in El.- Mag. Fields Example: induced electric dipole radiation from harmonically bound charge , damping Γ Lorentz/Drude 1900/1905 � � �    � � m , q E in ( ω )    � � d ind ( ω ) = q 2 1 � � E in ( ω ) 0 − ω 2 − i Γ ω ω 2 ω 0 , Γ m � �� � = : 4 π α E 1 ( ω ) � � E 2 + β M 1 ( ω ) � α E 1 ( ω ) � B 2 L pol = 2 π + ... � �� � electric, magnetic scalar dipole “displaced volume” [ 10 − 3 fm 3 ] = ⇒ Clean, perturbative probe of ∆ ( 1232 ) properties, nucleon spin-constituents, χ iral symmetry of pion-cloud & its breaking (proton-neutron difference). – fundamental hadron property = ⇒ link to emergent lattice-QCD results Alexandru/Lee/. . . 2005-, Detmold/. . . 2006-, LHPC 2007-, Leinweber/. . . 2013 – β p M 1 in elmag. p-n mass split M p M 1 − β n γ − M n γ ≈ [ 1 . 1 ± 0 . 5 ] MeV – 2 γ contribution to Lamb shift in muonic H ( β M 1 ), proton radius π – dark-matter detection scenarios e.g. Appelquist/. . . 2014- Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 1-1

  3. (b) Understanding Energy Dependence hg/Hildebrandt/Hemmert/Pasquini 2002/03 Polarisabilities : Energy-dependent Multipoles of real Compton scattering. � � E × ˙ B × ˙ E 2 + β M 1 ( ω ) � B 2 + γ E 1 E 1 ( ω ) � α E 1 ( ω ) � σ · ( � � σ · ( � � E )+ γ M 1 M 1 ( ω ) � 2 π B )+ ... Neither more nor less information about response of constituents, but more readily accessible. α E 1 ( ω ) : Pion cusp well captured by single- N π . β M 1 ( ω ) : para-magnetic N -to- ∆ M 1 -transition. Ω Π Ω � Ω Π Ω � 30 p data range p data range 30 25 d data range d data range 20 20 Re Im Re 10 15 Im 0 10 � 10 Β M1 � Ω � Α E1 � Ω � 5 � 20 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 + + + + + + + + + + + + + + + + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Re : refraction ; Im : absorption π + π + π − π + For ω �≪ m π more than “static + slope”! = ⇒ Need to understand dynamics! π + E Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 2-1

  4. 2. Polarisabilities from Compton Scattering (a) The Method: Chiral Effective Field Theory Degrees of freedom π , N , ∆ ( 1232 ) + all interactions allowed by symmetries: Chiral SSB, gauge, iso-spin,. . . = ⇒ Chiral Effective Field Theory χ EFT ≡ low-energy QCD � D 2 � � 2 2 M + g A π π a π a + ··· + N † [ i D 0 + L χ EFT = ( D µ π a )( D µ π a ) − m 2 σ · � N † N � D π + ... ] N + C 0 + ... 2 f π Controlled approximation = ⇒ model-independent, error-estimate. −15 E [MeV] λ [fm=10 m] 0.2 p,n (940) ω,ρ (770) π M −M ∆ N 1 π (140) 2 H 5 0 8 � m π M ∆ − M N = p typ Expand in δ = Λ χ ≈ 1GeV ≈ ≪ 1 (numerical fact) Pascalutsa/Phillips 2002 . Λ χ Λ χ Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 3-1

  5. Bernard/Kaiser/Meißner 1992-4, Butler/Savage/Springer 1992-3, Hemmert/. . . 1998 (b) All 1N Contributions to N 4 LO McGovern 2001, hg/Hemmert/Hildebrandt/Pasquini 2003 McGovern/Phillips/hg 2013 Unified Amplitude: gauge & RG invariant set of all contributions which are at least N 4 LO ( e 2 δ 4 ): accuracy δ 5 � 2% ; ω � m π in low régime ( e 2 δ 0 ): accuracy δ 2 � 20% . in high régime ω ∼ M ∆ − M N at least NLO or π 0 b 1 ( M 1 ) covariant with vertex NLO N 2 LO b 2 ( E 2 ) LO corrections = δα , δβ fit etc. etc. Unknowns: short-distance δα , δβ ⇐ ⇒ static α E 1 , β M 1 Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 4-1

  6. McGovern/Phillips/hg 2013 (c) Nucleon Polarisabilities from a Consistent Database database: + Feldman PPNP 2012 250 400 250 250 35 25 25 25 20 20 20 30 b 200 200 200 300 15 15 15 25 20 10 150 10 150 10 150 200 5 5 5 15 100 100 100 10 0 0 0 40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160 100 50 50 50 Θ lab � 85° Θ lab � 110° Θ lab � 155° Θ lab � 45° 0 0 0 0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 250 25 300 35 20 30 250 200 15 25 200 10 20 150 5 150 15 100 0 10 100 40 60 80 100 120 140 160 40 60 80 100 120 140 160 50 50 Θ lab � 60° Θ lab � 133° 0 0 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 5-1

  7. (d) Fit Discussion: Parameters and Uncertainties McGovern/Phillips/hg 2013 exp ( stat + sys ) 1 σ - error 5 B a l d i n Σ N2LO ( free ) r u 4 l e 1 σ -contours β M1 [ 10 - 4 fm 3 ] N2LO ( Baldin ) Consistent with Baldin Σ Rule ∞ 3 NLO ( Baldin ) � d ν σ ( γ p → X ) 1 α E 1 + β M 1 = 2 π 2 ν 2 ν 0 NLO ( free ) = 13 . 8 ± 0 . 4 Olmos de Leon 2001 2 need more forward data to constrain. LO ( no fit ) 1 9 10 11 12 13 α E1 [ 10 - 4 fm 3 ] Fit Stability: floating norms within exp. sys. uncertainties; vary dataset, b 1 , vertex dressing,. . . Residual Theoretical Uncertainty from convergence pattern: δ 2 ≈ 1 6 of LO → NLO change δ ( α − β ) = 3 . 5 E 1 [ 10 − 4 fm 3 ] M 1 [ 10 − 4 fm 3 ] α p β p χ 2 / d.o.f. N 2 LO Baldin constrained 10 . 65 ± 0 . 4 stat ± 0 . 2 Σ ± 0 . 3 theory 3 . 15 ∓ 0 . 4 stat ± 0 . 2 Σ ∓ 0 . 3 theory 113 . 2 / 135 α p E 1 + β p M 1 = 13 . 8 ± 0 . 4 Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 6-1

  8. (e) Fit Discussion: Comparison McGovern/Phillips/hg 2013 exp � stat � sys � � theory � model 1 Σ� error in quadrature 6 Baldin � rule McG � DRP � hg free 5 Zieger � Pascalutsa � Lensky 2010 4 Β M1 � 10 � 4 fm 3 � 3 McG � DRP � hg PDG 2012 2 TAPS free 1 OdeL global 0 Grießhammer 2013 7 8 9 10 11 12 13 14 Α E1 � 10 � 4 fm 3 � McGovern/Lensky 2014: covariant χ EFT gives same results. Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 7-1

  9. (e) Fit Discussion: Comparison McGovern/Phillips/hg 2013 exp � stat � sys � � theory � model 1 Σ� error in quadrature 6 Baldin � rule McG � DRP � hg free 5 Zieger � Pascalutsa � Lensky 2010 4 Β M1 � 10 � 4 fm 3 � 3 McG � DRP � hg PDG 2012 2 PDG 2013 TAPS free 1 OdeL global 0 Grießhammer 2013 7 8 9 10 11 12 13 14 Α E1 � 10 � 4 fm 3 � McGovern/Lensky 2014: covariant χ EFT gives same results. Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 7-2

  10. (f) Creating a Consistent Proton Compton Database hg/McGovern/Phillips/Feldman PPNP 2012 300 250 250 200 Θ lab � 75 200 Θ lab � 35 200 Θ lab � 65 150 150 150 100 100 100 50 50 50 0 0 0 50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350 250 200 Θ lab � 105 200 Θ lab � 90 200 Θ lab � 115 150 150 150 100 100 100 50 50 50 0 0 0 50 100 150 200 250 300 350 50 100 150 200 250 300 350 50 100 150 200 250 300 350 250 250 200 Θ lab � 125 200 Θ lab � 135 ∼ 300 data, mostly 1991-2001 150 150 100 100 New effort for better data: 50 50 MAMI, MAXlab, HI γ S,. . . 0 0 50 100 150 200 250 300 350 50 100 150 200 250 300 350 Gaps: ω ∈ [ 160;250 ] MeV ; θ → 0 ◦ : Baldin check; θ → 180 ◦ for ∆ ( 1232 ) ! χ 2 Quoted stat+sys too small for quoted fluctuations; tensions MAMI vs. LEGS; etc. = ⇒ d . o . f . ≈ 1 needs pruning . Not more , but more reliable data needed for unpolarised proton. Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 8-1

  11. (g) Neutron Polarisabilities and Nuclear Binding hg/. . . / + Phillips/ + McGovern 2004-2014 Need model-independent, systematic subtraction of binding effects. = ⇒ χ EFT: reliable uncertainties. – Nucleon structure: averaged neutron & proton polarisabilities: χ EFT, Disp. Rel.: p-n difference is small hg/Pasquini/. . . 2005 S NN ∑ – Parameter-free one-nucleon contributions: partial waves – Parameter-free charged meson-exchange currents dictated in χ EFT by gauge & chiral symmetry: + π − Test charged-pion component of NN force. Rescattering pivotal for Thomson limit A ( ω = 0 ) = − e 2 ǫ ′ . � ǫ · � π M d = ⇒ tiny dep. on d wave fu. & NN pot. Polarisabilities, GHP Baltimore (18+2)’, 10.04.2015 Grießhammer, INS@GWU 9-1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend