deeply virtual compton scattering
play

Deeply Virtual Compton Scattering on the neutron with CLAS12 at 11 - PowerPoint PPT Presentation

Deeply Virtual Compton Scattering on the neutron with CLAS12 at 11 GeV e g e n n GPDs Silvia Niccolai (IPN Orsay), for the CLAS Collaboration INPC 2019, Glasgow (UK) - August 1 st , 2019 Deeply Virtual Compton Scattering and quark


  1. Deeply Virtual Compton Scattering on the neutron with CLAS12 at 11 GeV e’ g e n n’ GPDs Silvia Niccolai (IPN Orsay), for the CLAS Collaboration INPC 2019, Glasgow (UK) - August 1 st , 2019

  2. Deeply Virtual Compton Scattering and quark GPDs • Q 2 = - (k- k’) 2 e’ • x B = Q 2 /2M n n=E e -E e ’ g t • x+ξ , x- ξ long. mom. fract. e • t = D 2 = (p- p’) 2 g * (Q 2 ) • x  x B /(2-x B ) factorization x+ξ x- ξ At leading order QCD, twist 2, chiral-even ~ ~ H, H, E, E ( x,ξ,t ) (quark helicity is conserved), quark sector → 4 GPDs for each quark flavor N(p’) N(p) Quark angular momentum (Ji’s sum rule) xp b  1 1  1        D  D z xdx ( H ( x , , t 0 ) E ( x , , t 0 )) J L  x 2 2 1 X. Ji, Phy.Rev.Lett.78,610(1997) Nucleon tomography  D 2 d  D    D i b 2   q ( x , b ) e H ( x , 0 , )    2 ( 2 ) 0  D 2 d ~  D D    D i b 2   q ( x , b ) e H ( x , 0 , )    2 ( 2 ) 0 M. Burkardt, PRD 62, 71503 (2000)

  3. Accessing GPDs through DVCS DVCS allows access to 4 complex GPDs-related quantities: Compton Form Factors CFF(  ,t)   1 GPDs ( x , , t )        T DVCS  ~ P dx i GPDs ( , , t )   x  1      1 1 1        2 H e q q Re P H ( x , , t ) H ( x , , t )   dx q     q   x x 0   2 s  DVCS BH         2 ~ T T q q H e Im H ( , , t ) H ( , , t ) q q     D s  s  s   I DVCS BH Proton Neutron ~ Im { H p , H p , E p } Polarized beam, unpolarized target: ~ ~ Ds LU ~ sin f Im{F 1 H +  (F 1 +F 2 ) H -kF 2 E+… } Im { H n , H n , E n } g ~ Unpolarized beam, longitudinal target: Im { H p , H p } e’ f ~ ~ Ds UL ~ sin f Im{F 1 H +  (F 1 +F 2 )( H + x B /2 E ) –  kF 2 E } Im { H n , E n } e ~ N’ Re { H p , H p } Polarized beam, longitudinal target: ~ Ds LL ~ (A+Bcos f Re{F 1 H +  (F 1 +F 2 )( H + x B /2 E )+… } Re { H n , E n } Im { H p , E p } Unpolarized beam, transverse target: Ds UT ~ cos f sin f s f Im{k(F 2 H – F 1 E ) +… } Im { H n }

  4. Summary of proton-DVCS spin observables and tomography Beam charge asymmetry Beam spin asymmetry Transverse R. Dupré, M. Guidal, target spin M.Vanderhaeghen, asymmetry PRD95, 011501 (2017) Beam-spin and Proton DVCS at JLab@12 GeV tr. target spin asymmetry Longitudinal target spin asymmetry Beam-spin and long. target spin asymmetry

  5. Interest of DVCS on the neutron A combined analysis of DVCS observables for proton and neutron targets is necessary for flavor separation of GPDs               9 ( H , E ) ( , , t ) 4 H , E ( , , t ) H , E ( , , t ) 15 u p n               9 ( H , E ) ( , , t ) 4 H , E ( , , t ) H , E ( , , t ) 15 d n p Moreover, the beam-spin asymmetry for nDVCS is the most sensitive observable to the GPD E → Ji’s sum rule for Quarks Angular Momentum Polarized beam, unpolarized target:   f ~   ~ Im{ H n , H n , E n } D s f     H H E ~ sin Im F F F kF d LU 1 1 2 2 Neutron Unpolarized beam, transversely polarized target: Proton   f Im{ H p , E p } D s f   H E ~ cos Im k ( F F ) ... d UT 2 1 The BSA for nDVCS: • is complementary to the TSA for pDVCS on transverse target, aiming at E • depends strongly on the kinematics → wide coverage needed • is smaller than for pDVCS → more beam time needed to achieve reasonable statistics

  6. DVCS on the neutron in Hall A at 6 GeV → ed →eγ (np) F. Cano, B. Pire, Eur. Phys. J. A19 (2004) 423 ~ Ds LU ~ sin f Im {F 1 H +  (F 1 +F 2 ) H -kF 2 E } M. Mazouz et al., PRL 99 (2007) 242501 S. Ahmad et al., PR D75 (2007) 094003 VGG, PR D60 (1999) 094017 Q 2 =1.9 GeV 2 and x B =0.36 NEW! Hall-A experiment E08-025 (2010) • Beam-energy « Rosenbluth » separation of • E03-106 : First-time measurement of Ds LU for nDVCS CS using an LD2 target and two nDVCS, model-dependent extraction of J u , J d different beam energies • First observation of non-zero nDVCS CS 1  1       xdx ( H ( x , , t 0 ) E ( x , , t 0 )) J • Results recently submitted for publication  2 1

  7. E12-11-003: nDVCS on the neutron with CLAS12 at 11 GeV ~ Ds LU ~ sin f Im {F 1 H +  (F 1 +F 2 ) H -kF 2 E }d f JLab PAC: high-impact experiment The most sensitive observable to the GPD E → ed → e(p)n g Projections for 90 PAC days -t 0 1.2 Fully exclusive final state: 0.2 CLAS12 +Forward Tagger +Central Neutron Detector BSA Liquid deuterium target Beam polarization =85% L = 10 35 cm −2 s −1 /nucleon -0.2 Model predictions (VGG) for different values of quarks’ angular momentum J u =.3, J d =.1 J u =.1, J d =.1 J u =.3, J d =.3 J u =.3, J d =-.1 Hall-A@6 GeV kinematics

  8. CLAS12 Run Group B Electroproduction on deuterium with CLAS12 DIS nDVCS Elastic SIDIS Scattering + J/psi photoproduction + Short Range Correlations 2019 schedule: first part of RG B in Febuary 6th - March 25th 2019, second part in November 1st – December 19th → ~44.5 PAC days (~1/2 of approved run time) Statistics for the spring run: • 237 « good » production runs + various ancillary runs  First round of preliminary • « Production » beam current: 50 nA calibrations done • ~9.7 B triggers at 10.6 GeV , 11.7 B triggers at 10.2 GeV  Reconstruction ongoing • Average beam polarization ~86% (22 Moeller runs) • ~25% of the approved beam time

  9. CLAS12 Run group B: experimental setup Forward Central RICH Detector Detector Forward Tagger CLAS12 baseline BAND Central Neutron Detector

  10. CND: characteristics and performances with RGB data Purpose: detect the recoiling neutron in nDVCS CND design: scintillator barrel - 3 radial Requirements/performances : layers, 48 bars per layer coupled two-by-two • good neutron/photon separation for 0.2<p n <1 GeV/c downstream by a “u - turn” lightguide, 144 → ~150 ps time resolution  long light guides with PMTs upstream • momentum resolution d p/p < 10%  • neutron detection efficiency ~10%  S.N. et al ., NIM A 904, 81 (2018) CND hits matched to charged tracks CND hits not matched to charged tracks Photons Neutrons (<p>~0.5 GeV) Background

  11. First glance at nDVCS from RGB spring data • Very preliminary calibrations and reconstruction • 11 full runs, at both beam energies (10.6 and 10.2 GeV) • ~5% of the spring run statistics (1.25% of the approved beam time) Final state: en g reconstructed using basic CLAS12 PID • → ed→eγ n(p) • no refined PID, no fiducial cuts, no corrections • Photons are reconstructed in FT and FEC • Minimum energy 1 GeV • The highest-energy photon of the event is chosen • Neutrons are reconstructed in CND and FEC • The neutron having momentum closest to the average expected momentum for nDVCS (~0.6 GeV) is taken • nDVCS simulation on deuteron (GPD based generator) • Same event selection as for the data • Helps determine optimal detection topology and exclusivity cuts

  12. Kinematics ( q vs p): electron, neutrons, photons Base cuts: • Q 2 >1 GeV 2 DATA MC • q (e)>5 ° • p(e)>1 GeV • vz(e) cut • p n >0.3 GeV • No other charged particles detected A lot of EC neutrons, at high p nDVCS neutrons mainly in CND A lot of low-energy nDVCS photons mainly in photons, mainly in FEC FT, and with high energy

  13. Kinematics ( q vs p): electron, neutrons, photons Base cuts: • Q 2 >1 GeV 2 DATA MC • q (e)>5 ° • p(e)>1 GeV • vz(e) cut • p n >0.3 GeV • No other charged particles detected • Neutrons in CND E g >2 GeV cut nDVCS photons mainly in to remove FT, and with high energy background

  14. Exclusivity variables Base cuts + E g >2 GeV E(x) ( ed→e’n g X) (GeV) M(X) 2 ( ed→e’n g X) (GeV 2 ) en g events with CND neutron en g events with CND neutron, FT photon p(x) ( ed→e’n g X) (GeV) M(X) 2 ( en→e’n’ g X) (GeV 2 ) Df ( ° ) Cone angle qg X ( ° )

  15. en g yield vs f , after exclusivity cuts Very preliminary Q 2 (GeV 2 ) Very preliminary Data exclusivity cuts: nDVCS MC 0<M(X) 2 <2 GeV 2 0<E(X)<2 GeV 0<p(X)<1 GeV -2 ° < Df <2 ° -1< D t<1 GeV 2 -t (GeV 2 ) x B To-do list: • Refine calibrations • Reconstruct all data • Data, all photons Data Refine exclusivity cuts Data, photons in FT nDVCS MC • Study other topologies (FD…) • Beam-helicity asymmetry  0 background • subtraction • .... f ( ° ) f ( ° )

  16. Future experiment: nDVCS, target-spin asymmetry First time measurement of longitidunal target-spin asymmetry and double (beam-target) spin asymmetry ~ ~ Ds UL ~ sin f Im {F 1 H +  (F 1 +F 2 )( H + x B /2 E ) –  kF 2 E+… } ~ ~ Ds LL ~ ( A+Bcos f Re {F 1 H +  (F 1 +F 2 )( H + x B /2 E ) –  kF 2 E+… } → 3 observables ( including BSA), constraints on real and imaginary CFFs of various neutron GPDs eND 3 → e(p)n g CLAS12 + Longitudinally polarized target + CND L = 3/20∙10 35 cm -2 s -1 Run time = 40 days Will run in 2021 P t = 0.4; P b = 0.85

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend