helicity chirality
play

Helicity/Chirality Helicities of (ultra-relativistic) massless - PowerPoint PPT Presentation

Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically) The symmetry is


  1. Helicity/Chirality • Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed • Conservation of chiral charge is a property of massless Dirac theory (classically) • The symmetry is anomalous at quantum level 2

  2. Chiral magnetic effect • Chiral charge is produced by topological QCD configurations  2 g N ( ) d N N ~    f 3 a R L d x F F   a 2 16 dt • Random fluctuations with nonzero chirality in each event N R  N L  0   5  0 • Driving electric current   2 e B   j ฀  5 2 2 3

  3. Heavy ion collisions • Dipole pattern of electric currents (charge correlations) in heavy ion collisions [Kharzeev, Zhitnitsky, Nucl. Phys. A 797 , 67 (2007)] [Kharzeev, McLerran, Warringa, Nucl. Phys. A 803 , 227 (2008)] [Fukushima, Kharzeev, Warringa, Phys. Rev. D 78 , 074033 (2008)] 4

  4. Experimental evidence [B. I. Abelev et al. [The STAR Collaboration], arXiv:0909.1739] [B. I. Abelev et al. [STAR Collaboration], arXiv:0909.1717] 5

  5. Chiral separation effect • Axial current induced by fermion chemical potential free   eB 2  2  3 j 5 (free theory!) [Vilenkin, Phys. Rev. D 22 (1980) 3067] [Metlitski & Zhitnitsky, Phys. Rev. D 72 , 045011 (2005)] ฀ [Newman & Son, Phys. Rev. D 73 (2006) 045006] • Exact result (is it?), which follows from chiral anomaly relation • No radiative correction expected… 6

  6. The chiral anomaly and CSE Ambjorn, Greensite, Peterson (1983): Only LLL generates the chiral anomaly. Axial current induced in CSE: In a free theory, is generated only in LLL. The connection between and : Then, (anomalous relation!) Is the relation exact? 7

  7. Possible implication • Seed chemical potential ( μ ) induces axial current free   eB 2  2  3 j 5 • Leading to separation of chiral charges: μ 5 >0 (one side) & μ 5 <0 (another side) ฀ • In turn, chiral charges induce back-to-back electric currents through free   e 2 B 2  2  5 j 3 8 ฀

  8. Quadrupole CME • Start from a small baryon density and B≠0 • Produce back-to-back electric currents [Gorbar, V.M., Shovkovy, Phys. Rev. D 83 , 085003 (2011)] [Burnier, Kharzeev, Liao, Yee, Phys. Rev. Lett. 107 (2011) 052303] 9

  9. Motivation • Any additional consequences of the CSE relation? free   eB 2  2  3 j 5 (free theory!) [Metlitski & Zhitnitsky, Phys. Rev. D 72 , 045011 (2005)] • Any dynamical parameter ∆ (“chiral shift”) ฀ associated with this condensate?  L       3 5 L 0 • Note: ∆=0 is not protected by any symmetry 10

  10. Chiral shift in NJL model [Gorbar, V.M., Shovkovy, Phys. Rev. C 80 , 032801(R) (2009)] • NJL model (local interaction) • “Gap” equations:    0  1 2 G int j 0 (“effective” chemical potential) m  m 0  G int   (dynamical mass)    1 3 2 G int j 5 (chiral shift parameter) 11 ฀

  11. Solutions • Magnetic catalysis solution (vacuum state): • State with a chiral shift (nonzero density): 12

  12. Chiral shift @ Fermi surface • Chirality is ≈ well defined at Fermi surface • L-handed Fermi surface: k 3   (   s   ) 2  m 2 n  0 : k 3   (  2  2 n eB  s   ) 2  m 2 n  0 : k 3   (  2  2 neB  s   ) 2  m 2 • R-handed Fermi surface: k 3   (   s   ) 2  m 2 n  0 : ฀ k 3   (  2  2 n eB  s   ) 2  m 2 n  0 : k 3   (  2  2 n eB  s   ) 2  m 2 13 ฀

  13. Chiral shift vs. axial anomaly • Does the chiral shift modify the axial anomaly relation? • Using point splitting method, one derives [Gorbar, V.M., Shovkovy, Phys. Lett. B 695 (2011) 354] • Therefore, the chiral shift does not affect the conventional axial anomaly relation 14

  14. Axial current • Does the chiral shift give any contribution to the axial current? • In the point splitting method, one has  3   2   singular   2  2  2   2  2   3 j 5 [Gorbar, V.M., Shovkovy, Phys. Lett. B 695 (2011) 354] • This is consistent with the NJL calculations ฀ • Since , the correction to the axial current should be finite 15

  15. Axial current in QED [Gorbar, V.M., Shovkovy, Wang, Phys. Rev. D 88 , 025025 (2013); ibid. D 88, 025043 (2013)] • Lagrangian density L   1   4 F  F    i   D    0  m   (counterterms) • Axial current   ฀     5 3 5 j Z tr G ( x , x ) 3 2 • To leading order in coupling α = e 2 /(4π)     4 4 G ( x , y ) S ( x , y ) i d u d v S ( x , u ) ( u , v ) S ( v , y ) 16

  16. Expansion in external field • Use expansion of S ( x,y ) in powers of ext A  • To leading order in coupling, ext A  0  3 j 5 ฀ • The radiative correction is ฀ ฀ ext ext ext A  A  A    3 j 5 ฀ ฀ ฀ 17 ฀

  17. Alternative form of expansion S ( x , y )  e i  ( x , y ) S • Expand in field ( x  y ) S ( x , y )  S (0) ( x  y )  S (1) ( x  y )  i  ( x , y ) S (0) ( x  y ) ฀ Schwinger phase Translation invariant part ฀ • The Schwinger phase (in Landau gauge)  ( x , y )   eB 2 ( x 1  y 1 )( x 2  y 2 ) • Note: the phase is not translation invariant 18 ฀

  18. Translation invariant parts • Fourier transforms ( k 0   )  0  k    m (0) ( k )  i S 2  k 2  m 2   k 0    i  sign( k 0 )       0 3 ( k ) k m     ฀ ( 1 ) 1 2   0 3 ( ) S k eB   2       2 2 k 2 k i sign ( k ) m 0 0 • Note the singularity near the Fermi surface… 19

  19. Fermi surface singularity • “Vacuum” + “matter” parts 1     " Vac. " " Mat. "   n       2 2 k 2 k i sign ( k ) m 0 0 where 1   " Vac. " =   n       2 2 k 2 k m i 0       n - 1 2 i (- 1 )                2 2 k ( n 1 ) 2 " Mat. " = k k k m 0 0 0 ( n - 1 )! 20

  20. Axial current (0 th order) • From definition d 4 k    0   4 tr  3  5 S 3 (1) ( k ) j 5   2  • After integrating over energy 0   eB sign(  ) d 3 k   2  k 2  m 2    ฀ 3 j 5 4  3 and finally Matter part 0   eB sign(  )  2  m 2 3 ฀ j 5 2  2 • Note the role of the Fermi surface (!) 21 ฀

  21. Conventional wisdom • Only the lowest (n=0) Landau level contributes       0  eB 2  m 2 2  m 2  d k 3         3 j 5 k 3 k 3     4  2 giving same answer 0   eB sign(  ) ฀  2  m 2 3 j 5 2  2 • There are no contributions from higher Landau levels (n≥1) ฀ • There is a connection with the index theorem 22

  22. Two facets • Two ways to look at the same result B  0 B  0 ฀ ฀ 23

  23. Radiative correction • Original two-loop expression • After integration by parts 24

  24. Result (m<< μ ) • Loop contribution     f 1  f 2  f 3   eB  ln    eBm 2  2   11 2 3/2   1    ln 2  3 2  3   12   6  • Counterterm     ฀ 2 ct    eB  ln    eBm 2 ln  m  ln m  m 2  9  3   3  j 5 2  3 2  3  4 m  4     • Final result         eB  ln 2  2   eB m 2 ln 2 3/2  m  ln m  m 2  4  11 ฀   3  j 5 2  3 2  3  3 m  12     25 ฀

  25. Sign of nonperturbative physics • Unphysical dependence on photon mass         eB  ln 2  2   eB m 2 ln 2 3/2  m  ln m  m 2  4  11   3  j 5 2  3 2  3  3 m  12     • Infrared physics with m   k 0 , k 3  eB ฀ not captured properly • Note: similar problem exists in calculation of ฀ Lamb shift 26

  26. Nonperturbative effects (?) • Perpendicular momenta cannot be defined with accuracy better than  k  min ~ eB (In contrast to the tacit assumption in using expansion in powers of B -field) ฀ • Screening effects provide a natural infrared regulator m    (Formally, this goes beyond the leading order in coupling) ฀ 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend