harris recurrence for strongly degenerate stochastic
play

Harris recurrence for strongly degenerate stochastic systems, with - PowerPoint PPT Presentation

papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references Harris recurrence for strongly degenerate stochastic systems, with application to stochastic Hodgkin-Huxley models


  1. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references Harris recurrence for strongly degenerate stochastic systems, with application to stochastic Hodgkin-Huxley models Reinhard H¨ opfner, Universit¨ at Mainz and Eva L¨ ocherbach, Universit´ e Cergy-Pontoise and Michele Thieullen, Universit´ e Paris VI RDS Bielefeld 12.12.14

  2. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references talk based on Michele Thieullen, Eva L¨ ocherbach, Reinhard H¨ opfner Strongly degenerate time inhomogeneous SDEs: densities and support properties. Application to a Hodgkin-Huxley system with periodic input. arXiv:1410.0341 Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input. arXiv:1311.3458v3 , AIHP A general scheme for ergodicity in strongly degenerate stochastic systems. Ongoing work.

  3. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references I: strongly degenerate stochastic systems – main result for m < d , consider d -dim diffusion driven by m -dim Brownian motion dX t = b ( t , X t ) dt + σ ( X t ) dW t , t ≥ 0 with coefficients     b 1 ( t , x ) σ 1 , 1 ( x ) σ 1 , m ( x ) . . .  .   . .  . . .     b ( t , x ) = .  , σ ( x ) = . .    σ d , 1 ( x ) b d ( t , x ) σ d , m ( x ) . . . for t ≥ 0, x ∈ E : state space ( E , E ) Borel subset of R d (with some properties) coefficient smooth, but neither bounded nor globally Lipschitz assume: unique strong solution exists, has infinite life time in int( E ) aim: ask for Harris properties of ( X t ) t ≥ 0 (non homogeneous in time) when drift is time-periodic and when some Lyapunov function is at hand:

  4. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references assumption A write P s , t ( x , dy ) (0 ≤ s < t < ∞ , x , y ∈ E ) for the semigroup of ( X t ) t ≥ 0 assumption A: i) the drift is T -periodic in the time argument b ( t , x ) = b ( i T ( t ) , x ) , i T ( t ) := t modulo T ii) we have a Lyapunov function: � V : E → [1 , ∞ ) E -measurable, and for some compact K : P 0 , T V bounded on K , P 0 , T V ≤ V − ε on E \ K T -periodicity of the drift implies that the semigroup is T -periodic P s , t ( x , dy ) = P s + kT , t + kT ( x , dy ) , k ∈ N 0 , x , y ∈ E thus the T -skeleton chain ( X kT ) k ∈ N 0 is a time homogeneous Markov chain Lyapunov condition grants that skeleton chain will visit K infinitely often

  5. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references assumption B alternative under assumption A: define torus T := [0 , T ], define E := T × E , add time as 0-component to the process X : X t := ( i T ( t ) , X t ) , t ≥ s , X 0 = ( s , x ) X is time homogeneous, (1+ d )-dim, state space ( E , E ) assumption B: i) for some U ⊂ R d open and containing E , coefficients ( t , x ) → b i ( t , x ) , x → σ i , j ( x ) , 1 ≤ i ≤ d , 1 ≤ j ≤ m of SDE are real analytic functions on T := T × U ii) there exists some x ∗ ∈ int( E ) with the following two properties: x ∗ is of full weak Hoermander dimension (cf. section IV) x ∗ is attainable in a sense of deterministic control (cf. next slide)

  6. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references def 1 ’attainable in a sense of deterministic control’: in view of control arguments, put SDE in Stratonovich form dX t = � b ( t , X t ) dt + σ ( X t ) ◦ dW t with Stratonovich drift m d � � σ j ,ℓ ( x ) ∂σ i ,ℓ b i ( t , x ) = b i ( t , x ) − 1 � ∂ x j ( x ) , 1 ≤ i ≤ d 2 ℓ =1 j =1 definition 1: call x ∗ ∈ int( E ) attainable in a sense of deterministic control if for every starting point x ∈ E we can find some function ˙ h : [0 , ∞ ) → R m depending on x and x ∗ , all components ˙ h ℓ ( · ) in L 2 loc , 1 ≤ ℓ ≤ m , which drives a deterministic control system ϕ = ϕ h , x , x ∗ d ϕ t = � b ( t , ϕ t ) dt + σ ( ϕ t ) ˙ solution to h ( t ) dt from x = ϕ 0 towards x ∗ = lim t →∞ ϕ t (control theorem: Strook and Varadhan 1972, see Millet and Sanz-Sole 1994)

  7. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references thm 1 + cor 1 theorem 1: under assumptions A + B: i) ( d -dim:) the T -skeleton ( X kT ) k ∈ N 0 is a positive Harris recurrent chain with invariant probability µ on ( E , E ) ii) (1+ d -dim:) the process X := ( i T ( t ) , X t ) t ≥ 0 is positive Harris recurrent with invariant probability µ on ( E , E ) and both invariant measures are related by � T 1 µ = ds ( ǫ s ⊗ µ P 0 , s ) on E = T × E T 0 corollary 1: (SLLN) for functions G : E → R in L 1 ( µ ) and F : E → R in L 1 ( µ ) � � n 1 G ( X kT ) − → µ ( dy ) G ( y ) n k =1 � t � T � 1 1 F ( i T ( s ) , X s ) Λ( ds ) − → Λ( ds ) ( µ P 0 , s )( dy ) F ( s , y ) t T 0 0 E Q x -almost surely as n → ∞ or t → ∞ , for every starting point x ∈ E on the torus T , we may consider many finite measures Λ( ds ), not only uniform

  8. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references II: example, a stochastic Hodgkin-Huxley system V membran potential in a neuron, n , m , h gating variables, ξ dendritic input autonomous diffusion ( ξ t ) t ≥ 0 modelling dendritic input, analytic coefficients, carrying T -periodic deterministic signal t → S ( t ) encoded in its semigroup describe temporal dynamics of the neuron by a 5d stochastic system ( ξ HH): t − → ( V t , n t , m t , h t , ξ t ) =: X t 5d SDE driven by 1d BM with state space E = R × [0 , 1] 3 × R defined by dV t = d ξ t − F ( V t , n t , m t , h t ) dt dn t = [ α n ( V t )(1 − n t ) − β n ( V t ) n t ] dt dm t = [ α m ( V t )(1 − m t ) − β m ( V t ) m t ] dt dh t = [ α h ( V t )(1 − h t ) − β h ( V t ) h t ] dt d ξ t = ( S ( t ) − ξ t ) dt + dW t specific power series F ( V , n , m , h ), strictly positive analytic fcts α j ( V ), β j ( V ), j = n , m , h , see Izhikevich (2007), or Hodgkin and Huxley (1951)

  9. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references figure 1 trajectories may look like this (except that simulation here uses CIR type input) stochastic HH with periodic signal: voltage v(t) function of t ; black dotted line indicating periodicity of the semigroup 100 [mV] 60 20 0 0 100 200 300 400 [ms] stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 [ms] stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion) 10 5 [mV] 0 −10 0 100 200 300 400 the following parameters werde used for signal and CIR : period = 28 , amplitude = 9 , sigma = 0.5 , tau = 0.75 , K = 30

  10. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references figure 2 or like this (depending on signal and choice of parameters for process ( ξ t ) t ≥ 0 ) stochastic HH with periodic signal: voltage v(t) function of t ; black dotted line indicating periodicity of the semigroup 100 [mV] 60 20 0 0 100 200 300 400 [ms] stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 [ms] stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion) 5 [mV] 0 −5 0 100 200 300 400 the following parameters werde used for signal and CIR : period = 28 , amplitude = 5 , sigma = 1.5 , tau = 0.25 , K = 30

  11. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references chamaeleon property classical deterministic HH systems with periodic deterministic signal t → � S ( t ): � dV t = S ( t ) dt − F ( V t , n t , m t , h t ) dt dn t = [ α n ( V t )(1 − n t ) − β n ( V t ) n t ] dt = [ α m ( V t )(1 − m t ) − β m ( V t ) m t ] dt dm t = [ α h ( V t )(1 − h t ) − β h ( V t ) h t ] dt dh t may show – depending on � S ( · ) – qualitatively quite different behaviour (spiking or non-spiking; single spikes or spike bursts, periodic or chaotic solutions; if periodic, periodicity of output may equal ℓ ≥ 1 periods of input; see interesting tableau based on numerical solutions in Endler 2012) proposition 1: ’chamaeleon property’ of ( ξ HH): stochastic ξ HH system ( X t ) 0 ≤ t ≤ T coding deterministic signal t → S ( t ) imitates with positive probability over arbitrarily long (but fixed) time intervals any deterministic HH with smooth and T -periodic signal � S ( · ) � = S ( · ) (the proof is a consequence of the control theorem)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend