ee361 signals and systems ii
play

EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM - PowerPoint PPT Presentation

1 EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361 2 FOURIER TRANSFORM DERIVATION CHAPTER 5.1-5.2 3 FOURIER SERIES REMINDER Previously, FS allowed representation of a periodic


  1. 1 EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361

  2. 2 FOURIER TRANSFORM DERIVATION CHAPTER 5.1-5.2

  3. 3 FOURIER SERIES REMINDER ๏‚ก Previously, FS allowed representation of a periodic signal as a linear combination of harmonically related exponentials ๐‘ ๐‘™ = 1 ๐‘‚ ฯƒ ๐‘œ=<๐‘‚> ๐‘ฆ ๐‘œ ๐‘“ โˆ’๐‘˜๐‘™๐œ• 0 ๐‘œ ๐‘’๐‘ข ๏‚ก ๐‘ฆ[๐‘œ] = ฯƒ ๐‘™=<๐‘‚> ๐‘ ๐‘™ ๐‘“ ๐‘˜๐‘™๐œ• 0 ๐‘œ 2๐œŒ ๏‚ก ๐œ• 0 = ๐‘‚ ๏‚ก Would like to extend this (Transform Analysis) idea to aperiodic (non-periodic) signals

  4. 4 DT FOURIER TRANSFORM DERIVATION ๏‚ก Intuition (same idea as CTFT): ๏‚ก Consider a finite signal ๐‘ฆ[๐‘œ] ๏‚ก Periodic pad to get periodic signal เทค ๐‘ฆ[๐‘œ] ๏‚ก Find FS representation of เทค ๐‘ฆ[๐‘œ] ๏‚ก Analyze FS as ๐‘‚ โ†’ โˆž (๐œ• 0 โ†’ 0) to get DTFT ๏‚ก Note DTFT is discrete in time domain โ€“ continuous in frequency domain ๏‚ก Envelope ๐‘Œ(๐‘“ ๐‘˜๐œ• ) of normalized FS coefficients {๐‘ ๐‘™ ๐‘‚} defines the DTFT (spectrum of ๐‘ฆ[๐‘œ] )

  5. 5 DT FOURIER TRANSFORM PAIR 1 2๐œŒ ๐‘Œ ๐‘“ ๐‘˜๐œ• ๐‘“ ๐‘˜๐œ•๐‘œ ๐‘’๐œ• synthesis eq (inverse FT) ๏‚ก ๐‘ฆ[๐‘œ] = 2๐œŒ ืฌ ๏‚ก ๐‘Œ ๐‘“ ๐‘˜๐œ• = ฯƒ ๐‘œ=โˆ’โˆž โˆž ๐‘ฆ ๐‘œ ๐‘“ โˆ’๐‘˜๐œ•๐‘œ analysis eq (FT) ๏‚ก DTFT is discrete in time โ€“ continuous in frequency ๏‚ก Notice the DTFT ๐‘Œ(๐‘“ ๐‘˜๐œ• ) is period with period 2๐œŒ

  6. 6 DTFT CONVERGENCE ๏‚ก The FT converges if absolutely summable ๏‚ก ฯƒ ๐‘œ ๐‘ฆ ๐‘œ < โˆž 2 < โˆž finite energy ๏‚ก ฯƒ ๐‘œ ๐‘ฆ ๐‘œ ๏‚ก iFT has not convergence issues because ๐‘Œ ๐‘“ ๐‘˜๐œ• is periodic ๏‚ก Integral is over a finite 2๐œŒ period (similar to FS)

  7. 7 FT OF PERIODIC SIGNALS ๏‚ก Important property ๏‚ก ๐‘ฆ ๐‘œ = ๐‘“ ๐‘˜๐‘™๐œ• 0 ๐‘œ โ†” ๐‘Œ ๐‘˜๐œ• = ฯƒ ๐‘š=โˆ’โˆž โˆž 2๐œŒ๐œ€ ๐œ• โˆ’ ๐‘™๐œ• 0 โˆ’ 2๐œŒ๐‘š ๏‚ก Impulse at frequency ๐‘™๐œ• 0 and 2๐œŒ shifts ๏‚ก Transform pair ๏‚ก ฯƒ ๐‘™=<๐‘‚> ๐‘ ๐‘™ ๐‘“ ๐‘˜๐‘™๐œ• 0 ๐‘œ โ†” 2๐œŒ ฯƒ ๐‘™=โˆ’โˆž โˆž ๐‘ ๐‘™ ๐œ€ ๐œ• โˆ’ ๐‘™๐œ• 0 ๏‚ก Each ๐‘ ๐‘™ coefficient gets turned into a delta at the harmonic frequency

  8. 8 DTFT PROPERTIES AND PAIRS CHAPTER 5.3-5.6

  9. 9 PROPERTIES/PAIRS TABLES ๏‚ก Most often will use Tables to solve problems ๏‚ก Table 5.1 pg 391 โ€“ DTFT Properties ๏‚ก Table 5.2 pg 392 โ€“ DTFT Transform Pairs

  10. 10 NOTEWORTHY PROPERTIES ๏‚ก Periodicity โ€“ ๐‘Œ ๐‘“ ๐‘˜๐œ• = ๐‘Œ ๐‘“ ๐‘˜ ๐œ•+2๐œŒ ๏‚ก Time shift โ€“ ๐‘ฆ ๐‘œ โˆ’ ๐‘œ 0 โ†” ๐‘“ โˆ’๐‘˜๐œ•๐‘œ 0 ๐‘Œ ๐‘“ ๐‘˜๐œ• ๏‚ก Frequency/phase shift โ€“ ๐‘“ ๐‘˜๐œ• 0 ๐‘œ ๐‘ฆ ๐‘œ โ†” ๐‘Œ ๐‘“ ๐‘˜ ๐œ•โˆ’๐œ• 0 ๏‚ก Convolution โ€“ ๐‘ฆ ๐‘œ โˆ— ๐‘ง ๐‘œ โ†” ๐‘Œ ๐‘“ ๐‘˜๐œ• ๐‘ ๐‘“ ๐‘˜๐œ• 1 2๐œŒ ๐‘Œ ๐‘“ ๐‘˜๐œ„ ๐‘ ๐‘“ ๐‘˜ ๐œ•โˆ’๐œ„ ๏‚ก Multiplication โ€“ ๐‘ฆ ๐‘œ ๐‘ง ๐‘œ โ†” ๐‘’๐œ„ 2๐œŒ ืฌ ๏‚ก Notice this is an integral over a single period ๏ƒ  periodic convolution 1 2๐œŒ ๐‘Œ ๐‘“ ๐‘˜๐œ• โˆ— ๐‘ ๐‘“ ๐‘˜๐œ•

  11. 11 NOTEWORTHY PAIRS I ๏‚ก Decaying exponential ๏‚ก โ„Ž ๐‘œ = ๐‘ ๐‘œ ๐‘ฃ[๐‘œ] ๐‘ < 1 ๏‚ก Magnitude response

  12. 12 DECAYING EXPONENTIAL ๏‚ก 0 < ๐‘ < 1 ๏‚ก โˆ’1 < ๐‘ < 0 ๏‚ก Lowpass filter ๏‚ก Highpass filter

  13. 13 NOTEWORTHY PAIRS II ๏‚ก Impulse ๏‚ก ๐‘ฆ ๐‘œ = ๐œ€[๐‘œ] โ†” ๐‘Œ ๐‘“ ๐‘˜๐œ• = ฯƒ ๐‘œ ๐œ€ ๐‘œ ๐‘“ โˆ’๐‘˜๐œ•๐‘œ = ฯƒ ๐‘œ ๐œ€ ๐‘œ ๐‘“ โˆ’๐‘˜๐œ• 0 = ฯƒ ๐‘œ ๐œ€ ๐‘œ = 1 ๏‚ก ๐‘ฆ ๐‘œ = ๐œ€ ๐‘œ โˆ’ ๐‘œ 0 โ†” ๐‘Œ ๐‘“ ๐‘˜๐œ• = ฯƒ ๐‘œ ๐œ€ ๐‘œ โˆ’ ๐‘œ 0 ๐‘“ โˆ’๐‘˜๐œ•๐‘œ = ฯƒ ๐‘œ ๐œ€ ๐‘œ โˆ’ ๐‘œ 0 ๐‘“ โˆ’๐‘˜๐œ•๐‘œ 0 = ๐‘“ โˆ’๐‘˜๐œ•๐‘œ 0 ๏‚ก Rectangle pulse sin ๐œ• 2๐‘‚1+1 ๏‚ก ๐‘ฆ ๐‘œ = แ‰Š1 ๐‘œ โ‰ค ๐‘‚ 1 โ†” ๐‘Œ ๐‘“ ๐‘˜๐œ• = ฯƒ ๐‘œ=โˆ’๐‘‚ 1 ๐‘“ โˆ’๐‘˜๐œ•๐‘œ = ๐‘‚ 1 2 sin ๐œ• 0 ๐‘œ > ๐‘‚ 1 2 ๏‚ก Periodic signal ๏‚ก ๐‘ฆ ๐‘œ = ฯƒ ๐‘™=<๐‘‚> ๐‘ ๐‘™ ๐‘“ ๐‘˜๐‘™๐œ• 0 ๐‘œ โ†” ๐‘Œ ๐‘“ ๐‘˜๐œ• = 2๐œŒ ฯƒ ๐‘™=โˆ’โˆž โˆž ๐‘ ๐‘™ ๐œ€ ๐œ• โˆ’ ๐‘™๐œ• 0 ๏‚ก One period of ๐‘ ๐‘™ copied

  14. 14 DTFT AND LTI SYSTEMS CHAPTER 5.8

  15. 15 GENERAL DIFFERENCE EQUATION SYSTEM ๏‚ก Solve for frequency response ๏‚ก Take FT of both sides ๏‚ก Rational form โ€“ ratio of polynomials in e โˆ’๐‘˜๐œ• ๏‚ก Best solved using partial fraction expansion (Appendix A) ๏‚ก Note special heavy-side cover-up approach for repeated root

  16. 16 LTI SYSTEM APPROACH ๏‚ก Same techniques as in continuous case ๏‚ก ๐‘ ๐‘“ ๐‘˜๐œ• = ๐ผ ๐‘“ ๐‘˜๐œ• ๐‘Œ ๐‘“ ๐‘˜๐œ• ๏‚ก Partial fraction expansion ๏‚ก Inverse FT with tables

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend