harmonic signal parameters estimation
play

Harmonic signal parameters estimation Supervisor: I.G. Prokopenko - PowerPoint PPT Presentation

National Aviation University Aviation radio-electronic complex department Bulgarian Academy of Sciences Institute of Information and Communication Technologies Advanced computing for Innovation Y.D. Chyrka Harmonic signal parameters estimation


  1. National Aviation University Aviation radio-electronic complex department Bulgarian Academy of Sciences Institute of Information and Communication Technologies Advanced computing for Innovation Y.D. Chyrka Harmonic signal parameters estimation Supervisor: I.G. Prokopenko

  2. Background Postgraduate student Working as a scientist Working as an engineer Study at the IMT Student in the NAU 2005 2007 2009 2011 2013 2

  3. Outline Publications : Harmonic signals parameters estimation 4 International conferences (SMSDP-2010, SPS-2011, Automatics-2011, IRS-2012) (include 1 in Scopus) Stochastic NonStochastic 1 International article (JET) (include 1 in Scopus) approach approach 5 Ukrainian conferences 3 Ukrainian articles 2 International conferences (SPS-2013, IRS-2013) (include 2 in Scopus) Synchronization 1 International article (TKEA) systems 1 Ukrainian conference 3 International conferences (SPS-2009, SPS-2013, IRS-2013) (include 2 in Scopus) Signal Detection 2 Ukrainian conferences 1 Ukrainian article 1 Ukrainian conference Clusterization by 1 Ukrainian patent ordered statistics 2 Ukrainian conferences EEG processing 1 Ukrainian patent Total: 6 Scopus publications Local projects: 9 International conferences 2 International articles  Radar simulation complex for laboratory works 10 Ukrainian conferences  Simulation modeling program for a production line 4 Ukrainian articles 2 Ukrainian patents 3

  4. Scopus publications 4

  5. Goal and a signal model GOAL: to improve efficiency of parameters estimation on a limited observation interval . < 2 f / T ob d The additive model of counts sample: = + η + ξ = u s 1 , , i N i i i i 1. The digitized harmonic signal: [ ] ( ) γ = ω = ρ γ − + ϕ d / cos 1 f s i i , – the normalized frequency τ 1 η 2. The white Gaussian noise: i ξ , = ÷ 0 . 95 1 . 0 r 3. The correlated interference: i c There is no any a priori information about signal, noise and interference parameters. Harmonic signal parameters estimation 5

  6. Frequency estimation = α − − α = γ = s s s 2 cos( ) 3 The recurrent form of a sinewave: , i , N , − 1 2 i i i α − α − = 2 2 2 0 B 1) Without interference The quadratic equation: [ ]   − − 2 2 N N Step1 – ( ) ( ) ( )  ∑ ∑ = + − + 2 2 , ..., 2 / 2 B x x x x x  x x x x − + − + − 0 N 1 i 1 i 1 i i 1 i i i 1   = = 1 1 i i ( ) α + − = ± + γ ∗ = α ∗ ( , ) 2 2 B B arccos / 2 Step2 – Step3 – normed frequency estimation: 1 , 2 ( ) α + = γ < γ < π 2 cos 0 / 2 , 1 α + α + = 2 0 A B C 2) With interference The quadratic equation: [ ] − 1 N ( ) ( )( ) ∑ Step 1 : = − − − − + − 2 A x x x x x x x x − − − − − − − i 2 i 1 i 2 i 1 i i 1 i 2 i 3 = i 3 [ ] [ ] − − N 1 1 ( ) ( ) N ∑ ∑ ( )( ) ( ) = − 2 − − + − 2 = − − + − − − + − 2 2 2 B x x x x x x C x x x x x x x x x x − − − − − − − − − − − − − 2 1 1 2 3 i i i i i i i 2 i 1 i i 1 i 2 i 3 i i 1 i 2 i 3 = = i 3 i 3 ( ) 2 − α = − + 4 / 2 B B AC A Step 2 : ( ) ∗ ∗ γ = α α 1 = < < γ γ π arccos / 2 2 cos 0 Step 3 : , , Harmonic signal parameters estimation 6

  7. Frequency estimation = 10 dB P S /P Simulation parameters: N = 32 , η − − N 1 N 1 ( ) ∑ ∑ ∗ α = + 2 x x x / x − − − AR-est.: AR i i 2 i 1 i 1 = = i 2 i 1 The normed shift of estimations The normed st. dev of estimations. “k” – Our method; “ а ” – AR. Harmonic signal parameters estimation 7

  8. Amplitude and initial phase estimation 1) Without interference  − − − N 1 N 1 N 1  ∑ ∑ ∑ ρ = + − γ + γ γ = γ * 2 2 2 sin ( ) sin( ) cos( ) sin( ) A A amplitude  A i A i i x i  x y i x y   ( ) = = = ⇒ ϕ = − i 0 i 0 i 0   * arctan A A initial phase − − − y x N 1 N 1 N 1  ∑ ∑ ∑  γ γ + γ = γ = ρ ϕ = ρ ϕ 2 cos( ) sin( ) cos ( ) cos( ) cos , sin A i i A i x i  A A   x y i x y  = = = i 0 i 0 i 0 2) With interference  − − − − N 1 N 1 N 1 N 1 ∑ ∑ ∑ ∑ γ + γ γ + γ = γ 2 sin ( ) sin( ) cos( ) sin( ) sin( ) ;  A i A i i A i x i x y z i   = = = = ρ = + − i 0 i 0 i 0 i 0 * 2 2 A A amplitude   x y − − − − ( )  N 1 N 1 N 1 N 1 ∑ ∑ ∑ ∑ γ γ + γ + γ = γ ⇒ ϕ = −  2  * cos( ) sin( ) cos ( ) cos( ) cos( ) ; arctan A i i A i A i x i A A initial phase x y z i y x   = = = = = ρ ϕ = ρ ϕ = ξ i 0 i 0 i 0 i 0 cos , sin ,  A A A   − − − x y z 1 1 1 N N N ∑ ∑ ∑ γ + γ + ⋅ =  sin( ) cos( ) . A i A i A N x x y z i  = = = 0 0 0 i i i Harmonic signal parameters estimation 8

  9. Likelihood function analysis − 1 N ∑ Λ ϕ ξ = − + ϕ − ξ ρ, γ, ρ γ 2 ( , | , ..., ) ( sin( ) ) x x x i 0 - 1 N i = 0 i { } ∗ ∗ ∗ ∗ ϕ = Λ ϕ ρ γ ξ ρ, γ, ξ , , , arg min ( , | , ..., ) x x 0 N - 1 ϕ ρ, γ, ξ , rad rad ∆ γ ≈ 2 π / N Frequency interval between local minima: Harmonic signal parameters estimation 9

  10. Optimization algorithm Harmonic signal parameters estimation 10

  11. Optimization algorithm efficiency % Frequency, [rad] Harmonic signal parameters estimation 11

  12. Estimations censoring We propose and investigate a method of reducing the measuring system sensitivity to the appearance of gross errors by an a posteriori censoring of results of frequency measurements.  ∆ ≤ ∆ *  0 , , f f reliable estimation s ∆ = cr с *  ( ) f ∆ > ∆ , С *  , , f f unreliable estimation s  fl cr We consider that a more reliable result is the P significantly one at which the signal power S σ . In this case the 2 exceeds the noise power following decision rule for erroneous estimate is useful. ( ) * / σ ∗ < 2 P d S Harmonic signal parameters estimation 12

  13. Guaranteed estimation of frequency Goal : to get guaranteed estimations of parameters as corresponding limited sets ∈ ω ∈ ω ω ϕ ∈ ϕ ϕ [ , ], [ , ], [ , ] A A A . Maximum amplitude of an interferences is limited and a priori known . Solution of N-2 compatible inequalities system gives us bounds of frequency estimations + + ≤ ε = − y 2 y c y 4 n 2 ,..., N 1 − − n n 1 n 2 , Harmonic signal parameters estimation 13

  14. Guaranteed estimation of amplitude and phase ( Ω Π n ( Ω Π − 1 Ω ) ) ( ) P Let us to define quadrangle made by crossing of strips and n n  ~ ~ ~ Π Ω = Ω + Ω − ≤ ε ( ) { : sin cos } A A n A n y 1 2 n n ~  ~ ~ = ϕ = ϕ = T cos sin [ , ] A A A A A A A 1 2 1 2 ( Ω ) Also we will define as minimal rectangle for each . P P , + 1 n n n  − 1 N ∈ ∈  A P P + n , n 1 = 0 n ≤ ≤ min max P A P i i = = 1 ,..., 4 1 ,..., 4 i i ϕ ≤ ϕ ≤ ϕ min max i i = = 1 ,..., 4 1 ,..., 4 i i Harmonic signal parameters estimation 14

  15. Simulation results ~ = ~ = = = ω + ϕ + ξ ω ϕ = ξ n = 32 5 , sin( ) , 0 , 5 , 0 , 5 , 0 , 1 , N A y A n n n Harmonic signal parameters estimation 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend