one port
play

One-Port v Admittance Parameters Network - Hybrid Parameters i' - PowerPoint PPT Presentation

Two-Port Networks One-Port Networks Definitions i 1 + Impedance Parameters One-Port v Admittance Parameters Network - Hybrid Parameters i' 1 Transmission Parameters A pair of terminals at which a signal (voltage or


  1. Two-Port Networks One-Port Networks • Definitions i 1 + • Impedance Parameters One-Port v • Admittance Parameters Network - • Hybrid Parameters i' 1 • Transmission Parameters • A pair of terminals at which a signal (voltage or current) may • Cascaded Two-Port Networks enter or leave is called a port • Examples • A network having only one such pair of terminals is called a one-port network • Applications • No connections may be made to any other nodes internal to the network • By KCL, we therefore have i 1 = i ′ 1 • We discussed in ECE 221 how one-port networks may be modeled by their Th´ evenin or Norton equivalents J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 1 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 2 Two-Port Networks: Definitions & Requirements Two-Port Networks: Defining Equations I 1 ( s ) I 2 ( s ) i 1 i 2 + + Two-Port + + v 1 v 2 Two-Port Network V 1 ( s ) V 2 ( s ) Network - - i' 1 i' 2 - - • Two-port networks are used to describe the relationship between a • If the network contains dependent sources, one or more of the pair of terminals equivalent resistors may be negative • The analysis methods we will discuss require the following • Generally, the network is analyzed in the s domain conditions be met • Each two-port has exactly two governing equations that can be 1. Linearity written in terms of any pair of network variables 2. No independent sources inside the network • Like Th´ evenin and Norton equivalents of one-ports, once we know 3. No stored energy inside the network (zero initial conditions) a set of governing equations we no longer need to know what is 4. i 1 = i ′ 1 and i 2 = i ′ 2 inside the box J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 3 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 4

  2. Impedance Parameters Impedance Parameter Measurements + + + + Two-Port Two-Port I 1 ( s ) V 1 ( s ) V 2 ( s ) I 2 ( s ) I 1 ( s ) V 1 ( s ) V 2 ( s ) Network Network - - - - V 1 = z 11 I 1 + z 12 I 2 � � � � � � V 1 z 11 z 12 I 1 = = z 11 I 1 + z 12 I 2 V 1 V 2 = z 21 I 1 + z 22 I 2 V 2 z 21 z 22 I 2 V 2 = z 21 I 1 + z 22 I 2 • Suppose the currents and voltages can be measured If the right port is an open circuit ( I 2 = 0 ), then we can easily solve • Alternatively, if the circuit in the box is known, V 1 and V 2 can be for two of the impedance parameters: calculated based on circuit analysis � � z 11 = V 1 z 21 = V 2 • Relationship can be written in terms of the impedance parameters � � � � I 1 I 1 � � • We can also calculate the impedance parameters after making two I 2 =0 I 2 =0 sets of measurements J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 5 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 6 Impedance Parameter Measurements Continued Impedance Parameter Measurements Summarized + + + + Two-Port Two-Port V 1 ( s ) V 2 ( s ) I 2 ( s ) I 1 ( s ) V 1 ( s ) V 2 ( s ) I 2 ( s ) Network Network - - - - � � z 11 = V 1 z 12 = V 1 V 1 = z 11 I 1 + z 12 I 2 � � � � I 1 I 2 � � V 2 = z 21 I 1 + z 22 I 2 I 2 =0 I 1 =0 � � z 21 = V 2 z 22 = V 2 � � If the left port is an open circuit ( I 1 = 0 ), then we can easily solve for � � I 1 I 2 � � I 2 =0 I 1 =0 the other two impedance parameters: � � z 12 = V 1 z 22 = V 2 � � � � I 2 I 2 � � I 1 =0 I 1 =0 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 7 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 8

  3. Impedance Parameter Equivalent Example 1: Impedance Parameters 200 Ω I 1 ( s ) I 2 ( s ) 40 Ω z 11 z 22 I 1 + I 2 + + + 500 Ω 800 Ω V 1 ( s ) z 12 I 2 z 21 I 1 V 2 ( s ) V 1 V 2 - - 1 k Ω - - V 1 = z 11 I 1 + z 12 I 2 Find the z parameters of the circuit. = z 21 I 1 + z 22 I 2 V 2 • Once we know what the impedance parameters are, we can model the behavior of the two-port with an equivalent circuit. • Notice the similarity to Th´ evenin and Norton equivalents J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 9 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 10 Example 1: Workspace Example 2: Parameter Conversion I 1 ( s ) I 2 ( s ) + + Two-Port V 1 ( s ) V 2 ( s ) Network - - V 1 = z 11 I 1 + z 12 I 2 V 2 = z 21 I 1 + z 22 I 2 In general, the two defining equations can be written in terms of any pair of variables. For example, rewrite the defining equations in terms of the voltages V 1 and V 2 . J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 11 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 12

  4. Example 2: Workspace Example 2: Workspace Continued J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 13 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 14 Impedance & Admittance Parameters Hybrid Parameters I 1 ( s ) I 2 ( s ) I 1 ( s ) I 2 ( s ) + + + + Two-Port Two-Port V 1 ( s ) V 2 ( s ) V 1 ( s ) V 2 ( s ) Network Network - - - - Hybrid Parameters Impedance Parameters � h 11 � � I 1 V 1 = h 11 I 1 + h 12 V 2 V 1 = z 11 I 1 + z 12 I 2 � V 1 � � � � � � � � h 12 V 1 z 11 z 12 I 1 = = I 2 h 21 h 22 V 2 V 2 z 21 z 22 I 2 I 2 = h 21 I 1 + h 22 V 2 V 2 = z 21 I 1 + z 22 I 2 Inverse Hybrid Parameters Admittance Parameters � g 11 � � V 1 I 1 = y 11 V 1 + y 12 V 2 I 1 = g 11 V 1 + g 12 I 2 � � � � � � � I 1 � � I 1 y 11 y 12 V 1 g 12 = = I 2 = y 21 V 1 + y 22 V 2 I 2 y 21 y 22 V 2 V 2 = g 21 V 1 + g 22 I 2 V 2 g 21 g 22 I 2 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 15 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 16

  5. Transmission Parameters Transmission Parameter Conversion I 1 ( s ) I 2 ( s ) I 1 ( s ) I 2 ( s ) + + + + Two-Port Two-Port V 1 ( s ) V 2 ( s ) V 1 ( s ) V 2 ( s ) Network Network - - - - Transmission Parameters • Altogether there are 6 sets of parameters � a 11 V 1 = a 11 V 2 − a 12 I 2 • Each set completely describes the two-port network � V 1 � � � � � � b 12 V 2 V 2 = = A I 1 = I 1 a 21 a 22 − I 2 − I 2 a 21 V 2 − a 22 I 2 • Any set of parameters can be converted to any other set • We have seen one example of a conversion Inverse Transmission Parameters � b 11 V 2 = b 11 V 1 − b 12 I 1 • A complete table of conversions is listed in the text (Pg. 933) � V 2 � � � � � � b 12 V 1 V 2 = = B I 2 b 21 b 22 − I 1 − I 2 I 2 = b 21 V 1 − b 22 I 1 • You should have a copy of this in your notes for the final J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 17 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 18 Example 3: Two-Port Measurements Example 3: Workspace The following measurements were taken from a two-port network. Find the transmission parameters. Port 2 Open V 1 = 150 cos(4000 t ) V applied 25 cos(4000 t − 45 ◦ ) A measured = I 1 1000 cos(4000 t + 15 ◦ ) V measured V 2 = Port 2 Shorted = 30 cos(4000 t ) V applied V 1 1 . 5 cos(4000 t + 30 ◦ ) A measured I 1 = 0 . 25 cos(4000 t + 150 ◦ ) A measured = I 2 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 19 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 20

  6. Example 4: Two-Port Analysis Example 4: Workspace 800 Ω 800 Ω i 1 i 2 i 1 i 2 40 Ω 160 Ω 40 Ω 160 Ω + + + + + + v 1 v 3 16.2 v 3 v 2 v 1 v 3 16.2 v 3 v 2 200 Ω 200 Ω - - - - - - Find the hybrid parameters for the circuit shown above. J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 21 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 22 Example 4: Workspace Continued Example 5: Two-Port Measurements The following measurements were taken from a two-port network. Find the transmission parameters. Port 1 Open Port 1 Shorted V 1 = 1 mV I 1 = − 0 . 5 µ A V 2 = 10 V = 80 µ A I 2 I 2 = 200 µ A V 2 = 5 V Hint: △ b = b 11 b 22 − b 12 b 21 , a 11 = b 22 △ b , a 12 = b 12 △ b , a 21 = b 21 △ b , and a 22 = b 11 △ b . J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 23 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 24

  7. Example 5: Workspace Example 6: Two-Port Analysis i 1 R 1 R 3 v + ( t ) R 4 i 2 v - ( t ) + v 1 ( t ) C 1 R 2 v 2 ( t ) - C 2 Find an expression for the transfer function, h 11 , z 11 , g 12 , g 22 , a 11 , and y 21 . J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 25 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 26 Example 6: Workspace Example 6: Workspace Continued (1) i 1 R 1 R 3 i 1 R 1 R 3 v + ( t ) v + ( t ) R 4 i 2 R 4 i 2 v - ( t ) v - ( t ) + + v 1 ( t ) v 1 ( t ) C 1 R 2 C 1 R 2 v 2 ( t ) v 2 ( t ) - - C 2 C 2 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 27 J. McNames Portland State University ECE 222 Two-Port Networks Ver. 1.11 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend