harmonic properties of some automatics flows
play

Harmonic properties of some automatics flows Pierre Liardet (Joint - PowerPoint PPT Presentation

Journ ees Num eration Prague, Mai 26-30, 2008 Harmonic properties of some automatics flows Pierre Liardet (Joint work with Isabelle Abou) Universit e de Provence Laboratoire dAnalyse, Topologie et Probabilit e UMR-CNRS 6632


  1. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Harmonic properties of some automatics flows Pierre Liardet (Joint work with Isabelle Abou) Universit´ e de Provence Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  2. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Contents Linear representation of a q -automatic sequence 1 Summation formula 2 3 q -stack-automata Chained sequences 4 Illustration 5 Generalisation 6 Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  3. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 I. L INEAR REPRESENTATION OF A q - AUTOMATIC SEQUENCE I.1 q -automatic sequence Classical : A sequence u in a set X is said to be q -automatic if the set G ( u ) of subsequences n �→ u ( q k n + r ) , 0 ≤ t < q k ( k ∈ N is finite. Let G ( u ) := { g 0 , . . . , g m − 1 } with g 0 = u and define γ : n → X m by   g 0 ( n ) . . γ ( n ) =  .   .  g m − 1 ( n ) Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  4. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 For any q -digits j = 0 , 1 , . . . , q − 1, there exists a matrix A j (called instruction map) with 0-1 entries defined by the relation γ ( qn + j ) = A j γ ( n ) ( n ∈ N ) Notice : • each row contains only one 1, • these 1 are symbolic (playing the rˆ ole of a selection operator). The sequence u is generated by the standard q -automaton defined by : space of states : γ ( N ) , initial state : γ ( 0 ) , instructions : A j ( 0 ≤ j < q ) , and the sequence u is obtained from the output map : γ ( n ) �→ g 0 ( n ) (first projection). Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  5. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 I.2 Linear representation For a given automatic sequence u , there are many automata that generate u , but there always exists a linear model, i.e., the space of states is a subset of a linear space E ; each instruction can be extended to a linear endomorphism (say A j ) of E . For example, if u is real or complex valued, the above standard automaton furnished a standard linear model that generates u with a minimal number of states. → keep in mind that A j ( γ )( n ) = γ ( qn + j ) and A i A j ( γ )( n ) = γ ( q 2 n + qj + i ) Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  6. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 A concrete example : Let u be the periodic sequence of period 3 defined by u ( 0 ) = 1 , u ( 1 ) = u ( 2 ) = − 1 . Classically, u is 2-automatic. If we introduce the translation map T : n �→ n + 1, one has in fact G ( u ) := { g 0 = u , g 1 = u ◦ T , g 1 = u ◦ T 2 } with instructions     1 0 0 0 0 1  , A 0 = 0 0 1 A 1 = 0 1 0    0 1 0 1 0 0    − 1   − 1  + 1 � �  ,  , and space of states γ ( N ) = − 1 − 1 + 1     − 1 + 1 − 1 Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  7. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 II. S UMMATION FORMULA I.1 formal summation We use the standard model (to fix the ideas) r = 0 e r ( n ) q r (standard) : For n = � t γ ( n ) = A e 0 ( n ) . . . A e t ( n ) γ ( 0 ) . And we are interested in the formal sum n < N γ ( n ) . z n Γ( N ; z ) := � which is a comfortable manner :=)) to write the object ( γ ( 0 ) , γ ( 1 ) , . . . , γ ( N − 1 ) , ∅ , ∅ , ∅ , . . . ) Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  8. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Now we introduce the formal sum A [ z ] := A 0 + zA 1 + · · · + z q − 1 A q − 1 (= ( A 0 , . . . , A q − 1 , ∧ , ∧ , ∧ . . . ) ( ∧ for cancel operator ) which acts on Γ( N ; z ) by distributivity of the local actions z k A k ( z m γ ( m )) = z k + m γ ( qm + k ) so that Γ( qN , z ) = A ( z )Γ( N , z q ) and (”block” summation) : Γ( q m , z ) = A ( z ) A ( z q ) . . . A ( z q m − 1 )Γ( 1 ; z q m ) , Γ( 1 ; z q m ) = γ ( 0 ) Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  9. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Formal sum (continued) Set Π m ( z ) = A ( z ) A ( z q ) . . . A ( z q m − 1 ) 0 ≤ r ≤ K e r ( N ) q r For N = � ( e k ( N ) � = 0) and for 0 ≤ m ≤ K , define the m -tail � e r ( N ) q r t m = and t K + 1 = 0 . m ≤ r ≤ K From above we derive the formal summation �� �� m ≥ 0 z t m + 1 Π m ( z ) e m ( 1 , N , z q m ) γ N Γ( N , z ) = � q m + 1 with e m ( A , N , · ) = ∧ if e m ( N ) = 0 and e m ( A , N , z q m ) = z jq m A j � otherwise. j < e m ( N ) Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  10. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Interest ? (1) If X is a compact space, in order to study u from a statistical and harmonical point of view, it is classical to replace u ( n ) by f ( u ( n )) where f is a continuous map. (2) If X is a compact metrizable group, it is useful to introduce irreducible representations ρ of X and then to replace u ( n ) by orthogonal matrices ρ ( u ( n )) . In both case z figure a complex number of modulus 1. With a linear representation of the automaton, the instructions turn to be matrices, the operator A ( z ) can be viewed as a matrix and then, formal sums become summation in a suitable linear space. The usual goal is to estimate these sums (used in the ergodic machinery). A way to attack this problem is to compute the quadratic operator norm of the matrix A ( z ) : � max { eigenvalues of A ( ζ ) ∗ A ( ζ ) } . || A ( ζ ) || 2 = Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  11. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 III. q - STACK - AUTOMATA III.1 Some generalisation Going back to the output formula γ ( n ) = A e 0 ( n ) . . . A e t ( n ) γ ( 0 ) one can decide to change the automaton on line, at each step, taking care that the corresponding output e 0 ( n ) . . . A ( t ) γ ( n ) = A 0 e t ( n ) γ ( 0 ) is meaning full. Summation formula remains unchanged and estimation by quadratic norm can be a fruitful tool. Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  12. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 A nice example (for me, but for you ?) Choose the following linear realizations of Thue-Morse sequence � � � � � � � � � � + 1 − 1 1 0 0 1 S ( 0 ) = , A ( 0 ) , A ( 0 ) = = ; , − 1 + 1 0 1 0 1 1 0 and Rudin-Shapiro sequence � � � � � � � � � � � � + 1 + 1 − 1 − 1 1 0 0 0 � � , A ( 1 ) , A ( 1 ) S ( 1 ) = 0 = 1 = , , , . + 1 − 1 + 1 − 1 1 0 1 − 1 Fine ! the matrices A ( 0 ) and A ( 0 ) also act on S ( 1 ) , leading to the 0 1 following 2 -stack-automatic sequences : Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  13. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Construction Choose ( ε n ) n ∈ { 0 , 1 } N and define γ ( ε ) : N → {− 1 , + 1 } 2 by � + 1 � γ ( ε ) ( n ) = A ε 0 e 0 ( n ) . . . A ( ε t ) e t ( n ) − 1 We have for | z | = 1 (easy) √ || A ( 0 ) ( z ) || 2 ≤ 2 and || A ( 1 ) ( z ) || ≤ 2 . Therefore 1 || Γ( q m , z ) || 2 ≤ c . 2 2 ( ε 0 + ··· + ε m − 1 ) and 2 ( ε 0 + ··· + ε t − 1 ) ; 1 || Γ( N , z ) || 2 ≤ C . � ∞ r = 0 e r ( N ) 2 finally we are able to infer many interesting properties of the dynamical system built from the sequences γ ( ǫ ) . Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  14. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 IV. C HAINED SEQUENCES IV.1 Main definitions X is a compact metrizable group denoted by G . Definition. A map f : { 0 , 1 , . . . , q − 1 } ∗ → G is (q)-chained if f ( empty word ) = 1 G and for all digits a , b and all digital words w one has f ( abw ) = f ( ab ) f ( b ) − 1 f ( bw ) . Consequently f ( a 1 a 2 · · · a s w ) = f ( a 1 a 2 ) f ( a 2 ) − 1 . . . f ( a s − 1 a s ) f ( a s ) − 1 f ( a s w ) . The chained map is said to be left regular if f ( 0 w ) = f ( w ) for any digital word w . Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  15. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Definition. a sequence u : N → G is chained if there exists a left regular chained map f such that t � e r ( n ) q r ) . u n = f ( e t ( n ) · · · e 0 ( n )) ( n = r = 0 Typical examples : – Completely q -multiplicative sequences are chained, in particular the sum-of-digits function ; – Rudin-Shapiro sequence is chained (it is a 2-bloc map). Notice that the underlying chained maps f are right regular i.e., f ( w 0 ) = f ( w ) for all digital words. Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

  16. Journ´ ees Num´ eration Prague, Mai 26-30, 2008 Transition matrix T a T b = f ( ab ) f ( b ) − 1 . For any irreducible representation ρ of G the matrices ρ T = ( ρ ( a T b )) a , b verifies : √ q ≤ || ρ T || 2 ≤ q . The chaines sequence is called : • contractive if || ρ T || 2 < q , • Hadamard if || ρ T || 2 = √ q , for all irreducible non trivial representations of G . The case || ρ T || = 2 is typically represented by   1 0 · · · 0 0   i ρ T j =  .  .  i B j  .   0 Laboratoire d’Analyse, Topologie et Probabilit´ e UMR-CNRS 6632 Marseille

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend