on a rank factorisation problem arising in vibration
play

On a rank factorisation problem arising in vibration analysis A. - PowerPoint PPT Presentation

On a rank factorisation problem arising in vibration analysis A. Quadrat Inria Paris, Ouragan, IMJPRG, Sorbonne Universit e In collaboration with Elisa Hubert (Univ. Lyon), Axel Barrau (Safran Tech), Yacine Bouzidi (Inria Lille), Roudy


  1. On a rank factorisation problem arising in vibration analysis A. Quadrat Inria Paris, Ouragan, IMJ–PRG, Sorbonne Universit´ e In collaboration with Elisa Hubert (Univ. Lyon), Axel Barrau (Safran Tech), Yacine Bouzidi (Inria Lille), Roudy Dagher (Inria Chile) Journ´ ees Nationales de Calcul Formel Luminy, 02/03/2020

  2. Motivation: Gear box vibration analysis Elisa Hubert CIFRE PhD’s thesis ⋆ (Safran Tech) Gearbox health monitoring Up to date surveillance Reduction of damage frequency Optimization of maintenance intervention Say VRAOUMMM*! ⋆ D´ emodulation d’amplitude et de phase de signaux multi-porteuses : Application aux signaux vibratoires d’engrenage , Univ. Lyon, 2019 A. Quadrat On a rank factorisation problem arising in vibration analysis

  3. Demodulation problem M ∈ K n × m , D 1 , . . . , D r ∈ K n × n • K : field (e.g. Q , R , C ),   0 . . . 1 . .  ∈ K n × n   . . J n = . 1 .  1 . . . 0 • Definition: M ∈ C n × m is centrohermitian if J n M J m = M CH n , m ( K ): set of all the centrohermitian matrices of K n × m � � · � Frob : Frobenius norm , i.e. � A � Frob = trace ( A ⋆ A ) • The demodulation problem: M ∈ CH n , m ( C ) Find u ∈ CH n , 1 ( C ) , v i ∈ CH 1 , m ( C ) : � r i =1 D i u v i = M arg min u ∈ CH n , 1 ( C ) , v i ∈ CH 1 , m ( C ) � � r i =1 D i u v i − M � Frob A. Quadrat On a rank factorisation problem arising in vibration analysis

  4. Gear box vibration analysis A. Quadrat On a rank factorisation problem arising in vibration analysis

  5. Gear box vibration analysis Gearing vibration produced by 2 wheels W 1 and W 2 ( Capdessus 92 ) A. Quadrat On a rank factorisation problem arising in vibration analysis

  6. Gear box vibration analysis Gearing vibration produced by the teeth of 2 wheels W 1 and W 2 • N i denotes the number of teeth of the wheel W i f e = N 1 f 1 = N 2 f 2 • s static transmission error producing the vibration ( Mark 78 ) s ( t ) = s e ( t ) ( F + s 0 ( t ) + s 1 ( t ) + s 2 ( t )) s e and s 0 : periodic signals of frequency f e s i : periodic signal of frequency f i , i = 1 , 2 ⇒ Amplitude modulation ( Capdessus 92 ) ⇒ s ( t ) = s c ( t ) s m ( t ) s m : modulation f m = T − 1 (low-frequency) m s c : carrier f c = T − 1 = N f m , N ∈ N ≥ 0 (high-frequency) c A. Quadrat On a rank factorisation problem arising in vibration analysis

  7. Gear box vibration analysis • p : R → R : T -periodic integrable function, a ∈ R : � p ( t ) , a ≤ t < a + T , p 0 ( t ) = 0 , else , � � ⇒ p ( t ) = p 0 ( t ) ⋆ δ ( t − j T ) = p 0 ( t − j T ) j ∈ Z j ∈ Z • Fourier transform & Poisson’s formula yield � j � � � � � p 0 ( ν ) 1 ν − j 1 ν − j � � p ( ν ) = ˆ ˆ δ = T ˆ p 0 δ T T T T j ∈ Z j ∈ Z • Inverse Fourier transform p ( t ) = � 2 π ijt j ∈ Z c j ( p ) e ( Fourier series ) T � j � a + T � c j ( p ) = 1 = 1 p ( t ) e − 2 π ijt T dt T ˆ p 0 T T a • c j ( p ) = c − j ( p ) , j ∈ Z . p is real ⇒ c − j ( p ) = c j ( p ), j ∈ Z A. Quadrat On a rank factorisation problem arising in vibration analysis

  8. Gear box vibration analysis T − 1 = N T − 1 • s ( t ) = s c ( t ) s m ( t ), c m � j � � � j 1 s m ( ν ) = � ˆ j ∈ Z ( c m ) j δ ν − , ( c m ) j = ˆ s m 0 , T m T m T m � k � � � ν − k ( c c ) k = 1 s c ( ν ) = � ˆ k ∈ Z ( c c ) k δ , s c 0 ˆ , T c T c T c � l � � � l 1 s ( ν ) = � ˆ l ∈ Z ( c s ) l δ ν − , ( c s ) l = s 0 ˆ , T m T m T m � � j − k � � s ( ν ) = (ˆ ˆ s m ⋆ ˆ s c )( ν ) = ( c m ) j ( c c ) k δ ν − T m T c j ∈ Z k ∈ Z � � ν − j + k N � � = ( c m ) j ( c c ) k δ T m j ∈ Z k ∈ Z � ⇒ ( c s ) l = ( c m ) j ( c c ) k { ( j , k ) ∈ Z 2 | j + k N = l } A. Quadrat On a rank factorisation problem arising in vibration analysis

  9. Gear box vibration analysis .   . .   ( c s ) − 1      ( c s ) 0  =     ( c s ) 1      .  . . . . . . . . . .     . . . . . . . . . . . . . . . .     ( c c ) − 1 ( c m ) 2 N − 1 ( c m ) N − 1 ( c m ) − 1 ( c m ) − N − 1 ( c m ) − 2 N − 1     . . . . . .        ( c c ) 0  ( c m ) 2 N ( c m ) N ( c m ) 0 ( c m ) − N ( c m ) − 2 N     . . . . . . .     ( c c ) 1 ( c m ) 2 N +1 ( c m ) N +1 ( c m ) 1 ( c m ) − N +1 ( c m ) − 2 N +1     . . . . . .     .  . . . . . . .    . . . . . . . . . . . . . . . . A. Quadrat On a rank factorisation problem arising in vibration analysis

  10. Gear box vibration analysis Hypotheses on the signals • s c : finite number of non-zero harmonics � � ν − k � � s c ( ν ) = ˆ ( c c ) k δ ⇒ ( c s ) l = ( c m ) l − k N ( c c ) k T c 0 ≤| k |≤ r 0 ≤| k |≤ r • s m does not induce overlaps in ˆ s = ˆ s m ⋆ ˆ s c k N + | j | < ( k + 1) N − | j | ∀ k ∈ Z , ⇔ 2 | j | < N T m T m T m T m • • • • k N k N + | j | ( k + 1) N − | j | ( k + 1) N T m T m T m T m T m T m ( c m ) j = 0 for all j / ∈ { j ∈ Z | 2 | j | < N } = {− p , . . . , p } , where p = N − 1 , if N odd , N 2 − 1 , if N even 2 A. Quadrat On a rank factorisation problem arising in vibration analysis

  11. Gear box vibration analysis A. Quadrat On a rank factorisation problem arising in vibration analysis

  12. Gear box vibration analysis • | l | ≤ t := p + r N       ( c s ) − t ( c c ) − r ( c m ) − p . . .       . . .  .   .   .              ( c s ) − 1 ( c c ) − 1 ( c m ) − 1                   c s := ( c s ) 0 , c c := ( c c ) 0 , c m := ( c m ) 0             ( c s ) 1 ( c c ) 1 ( c m ) 1                   . . .  .   .   .  . . .             ( c s ) t ( c c ) r ( c m ) p   c m 0 . . . 0 . ...   .  0 .  c m   N odd : A = = c m ⊗ I 2 r +1  .  ... ... .   . 0   0 . . . 0 c m c s = A c c A. Quadrat On a rank factorisation problem arising in vibration analysis

  13. Gear box vibration analysis • The vectorization satisfies � � W T ⊗ U vec ( U V W ) = vec ( V ) U = I 2 r +1 , W = c m T ∈ C 1 × (2 p +1) , V = c c ∈ C (2 r +1) × 1 , ⇒ c c c m T = vec − 1 ( c s ) c − j ( s • ) = c j ( s • ) ⇒ c c , c m , vec − 1 ( c s ) centrohermitian • Amplitude demodulation problem: M s ∈ CH (2 r +1) , (2 p +1) ( C ). Find c c ∈ CH (2 r +1) , 1 ( C ) and c c ∈ CH 1 , (2 p +1) ( C ) such that c c c m T = M s • Phase and amplitude demodulation problem: T + D c c c m 2 T = M s , D := 2 π i f c diag ( − r , . . . , r ) c c c m 1 A. Quadrat On a rank factorisation problem arising in vibration analysis

  14. The rank factorization problem • The rank factorization problem: Determine u ∈ CH n , 1 ( C ) and v 1 , . . . , v r ∈ CH 1 , m ( C ) − if they exist − such that r � M = D i u v i ( bilinear polynomial system ) i =1 • A system-theoretical approach: r ) T ∈ K r × m A ( u ) := ( D 1 u . . . D r u ) ∈ K n × r , v := ( v T . . . v T 1 ⇒ A ( u ) v = M • Necessary condition: rank K ( M ) ≤ r • If rank K ( M ) = r then v has full row rank since r � � �� � � D i − λ i λ − 1 λ v = λ i v i = 0 , λ k � = 0 ⇒ M = D k u v i k i =1 1 ≤ i � = k ≤ r ∀ λ ∈ K \ { 0 } : ( u , v ) �→ ( λ u , λ − 1 v ) A. Quadrat On a rank factorisation problem arising in vibration analysis

  15. The rank factorization problem ( D 1 u . . . D r u ) v = M , l := rank K ( M ) ≤ r � �� � A ( u ) • L ∈ K p × n : full row rank matrix defining a basis of ker K ( . M ) = { λ ∈ K 1 × n | λ M = 0 } , p := dim K (ker K ( . M )) A ( u ) v = M ⇒ L A ( u ) v = L M = 0 ⇒ L A ( u ) = 0 ( v full row rank)  L D 1 u = 0 ,   . . ⇔ ( V ) .   L D r u = 0 , ⇔ u = Z ψ, ∀ ψ ∈ K d × 1 d = dim K ( V ) & Z ∈ K n × d full column rank defining a basis of V ⇒ i = 1 , . . . , r , L D i Z = 0 A. Quadrat On a rank factorisation problem arising in vibration analysis

  16. The rank factorization problem • X ∈ K n × l : full column rank matrix defining a basis of im K ( M . ) ⇒ ∃ ! Y ∈ K l × m full row rank : M = X Y • ker K ( . M ) = im K ( . L ) ⇒ ker K ( L . ) = im K ( M . ) = im K ( X . ) i = 1 , . . . , r , L D i Z = 0 ⇒ ∃ W i ∈ K l × d : D i Z = X W i A ( Z ψ ) = ( D 1 Z ψ . . . D r Z ψ ) = X ( W 1 ψ . . . W r ψ ) • Let u = Z ψ and B ( ψ ) := ( W 1 ψ . . . W r ψ ) ∈ K l × r A ( Z ψ ) v = X B ( ψ ) v = M = X Y ⇒ B ( ψ ) v = Y ( X full colum rank) • Example: If l := rank K ( M ) = r , then B ( ψ ) ∈ K r × r A. Quadrat On a rank factorisation problem arising in vibration analysis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend