group research
play

Group Research Relativistic Motions around a Black Hole 2010 - PowerPoint PPT Presentation

Group Research Relativistic Motions around a Black Hole 2010 KIAS-SNU Physics Winter Camp Date : February 7, 2010 Talk : , , , , , Table What is space-time ? How a particle moves? -


  1. Group Research Relativistic Motions around a Black Hole 2010 KIAS-SNU Physics Winter Camp Date : February 7, 2010 Talk : 주부경, 조창우, 김은찬, 서윤지, 고성문, 노대호

  2. Table • What is space-time ? • How a particle moves? - As a geometry • The black-hole ? •

  3. What is space-time ? Space + Time (additional dim)

  4. 성기오빠! 한화리조트 215호에서 만나 215호? 알았어 !!

  5. < 2134ft, N37, E128 > 한화리조트 215호

  6. < t, 2134ft, N37, E128 > Additional Dimension

  7. t = t t t ≠ 성기 연아 성기 연아

  8. How a particle moves? As a Geometry

  9. Action - Euclidian Space ∫ ∫ = + + 2 2 2 ds dx dy dz 2 2 2 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ dx dy dz ∫ = + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ dt ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ dt dt dt

  10. Action - Euclidian Space • Euler – Lagrange Equation ⎛ ⎞ ∂ ∂ d L L − = ⎜ ⎟ 0 ⎜ ⎟ • ∂ dt x ∂ ⎝ ⎠ x • → = v 0

  11. Action – In special relativity − τ = − + + + = 2 2 2 2 2 2 d dt dx dy dz dS ∫ ∫ ∫ μ ν τ = τ = − = − η 2 d dS dx dx μν − ⎛ ⎞ 1 0 0 0 μ ν ⎜ ⎟ dx dx d ∫ ∫ → − η σ = σ 0 1 0 0 ⎜ ⎟ Ld η = ⎜ μν σ σ μν ⎟ 0 0 1 0 d d ⎜ ⎟ ⎝ ⎠ 0 0 0 1

  12. Action - In special relativity • Euler – Lagrange Equation ⇒ ⎛ ⎞ ∂ ∂ d L L ⎜ ⎟ − = 0 ⎜ • ⎟ μ σ ∂ d x μ ⎝ ∂ ⎠ x

  13. Action – In general relativity ∫ ∫ ∫ μ ν τ = τ = − = − 2 d dS g dx dx μν ( ) μ ν g μν = dx dx ∫ ∫ → − σ = σ ? g d Ld μν σ σ d d

  14. The black hole Extremely curved space-time

  15. Schwarzschild metric 2 2 GM dr = − − + + θ + θ ϕ 2 2 2 2 2 2 2 ds (1 ) c dt r ( d sin d ) 2 2 GM c r − 1 2 c r Q=0, S=0, Massive

  16. Constant of motion 2 M dt = − ⋅ ξ = − = − t e u g u (1 )( ) τ tt r d φ d φ = η ⋅ = = 2 l u g u r ( ) φφ τ d φ ⋅ = − = + + t 2 r 2 2 u u 1 g ( u ) g ( u ) g ( u ) φφ tt rr ε − 2 2 2 e 1 1 ( dr M l Ml → = = − + − 2 ) τ 2 3 m 2 2 d r 2 r r

  17. Radial motion = = l 0, e 1 1 dr M = − 2 0 ( ) τ 2 d r ⋅ = − = + t 2 r 2 u u 1 g ( u ) g ( u ) tt rr

  18. Near the horizon dt 2 M − = − 1 (1 ) τ d r dr 2 M τ = − dr dr dt 2 M 2 M d r = = − − (1 ) τ τ d d dt r r Event horizon

  19. Eddington-Finkelstein coordinates r = υ − − − t r 2 M lo g 1 2 M 2 M = − − υ + υ + θ + θ φ 2 2 2 2 2 2 ds (1 ) d 2 d dr r ( d sin d ) r 2 M d − − υ + υ = 2 (1 ) 2 d dr 0 r υ = const ( ingoing radial light rays ) 2 M d − − υ + = (1 ) 2 dr 0 r r υ − + − = 2( r 2 M log 1) const 2 M

  20. + 1/2 2 r r ( r 2 M ) 1 = + − − + 3/2 1/2 t t 2 M [ ( ) 2( ) log ] − * 1/2 3 2 M 2 M ( r 2 M ) 1 •

  21. Reissner–Nordström metric 2 M dr = − − + + θ + θ ϕ 2 2 2 2 2 2 2 ds (1 ) dt r ( d sin d ) M r − 2 (1 ) r Q ≠ 0, S=0, Massive

  22. Eddington again… 2 ~ M = + − − 2 t t M ln( r M ) − r M ≡ − h 1 f 2 ~ ~ = − − + + + = 2 2 ds (1 h d t ) 2 hd t dr (1 h dr ) 0 ~ ~ + = → = − t r const d t dr 2 M dr dt 1 → = − = − = − dt dr , − 2 M ( r M ) dr f − 2 ( r ) r ~ + d t 1 h = − dr 1 h dt 1 = dr f

  23. We need elevator Black Hole

  24. Reference • Wikipedia – Key Word Black hole, Action Principle, General Relativity, Metric, Lagrangian, etc • Google – Key Word Black hole & charged, space-time • Book – Gravity (J.B.Hartle) – Introducing Einstein`s Relativity (Ray D’Inverno)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend