gravitational wave in modified gravities
play

Gravitational Wave in Modified Gravities Shinichi Nojiri Department - PowerPoint PPT Presentation

Gravitational Wave in Modified Gravities Shinichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Aug. 9, 2018 S. Nojiri (Nagoya U. & KMI) Gravitational


  1. Gravitational Wave in Modified Gravities Shin’ichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Aug. 9, 2018 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 1 / 29

  2. Mainly based on S. Capozziello, M. De Laurentis, S. Nojiri and S. D. Odintsov, “Evolution of gravitons in accelerating cosmologies: The case of extended gravity,” Phys. Rev. D 95 (2017) no.8, 083524 doi:10.1103/PhysRevD.95.083524 arXiv:1702.05517 [gr-qc] S. Nojiri and S. D. Odintsov, “Cosmological Bound from the Neutron Star Merger GW170817 in scalar-tensor and F ( R ) gravity theories,” Phys. Lett. B 779 (2018) 425 doi:10.1016/j.physletb.2018.01.078 arXiv:1711.00492 [astro-ph.CO]. K. Bamba, S. Nojiri and S. D. Odintsov, “Propagation of gravitational waves in strong magnetic fields,” Phys. Rev. D 98 (2018) no.2, 024002 doi:10.1103/PhysRevD.98.024002 arXiv:1804.02275 [gr-qc]. S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 2 / 29

  3. Introduction Gravitational Waves ⇐ linearizing ( g µν → g µν + h µν ) the Einstein equation, R µν − 1 2 g µν R = κ 2 T µν by choosing the transverse and traceless gauge, ∇ µ h µν = g µν h µν = 0 ⇒ [ ] 1 −∇ 2 h µν − 2 R λ ρ ν µ h λρ + R ρ µ h ρν + R ρ ν h ρµ − h µν R + g µν R ρλ h ρλ 2 = κ 2 δ T µν . T µν depends on the metric. The dependence carries the informations on the mechanism of the expansion of the universe. δ T µν can be different in models even if the expansion history of the universe is identical. S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 3 / 29

  4. Introduction 1 Example: Scalar Tensor Theory 2 Example: Quantum Thermodynamical Scalar Field 3 Speed of Propagation 4 Propagation of Light 5 Progagation in Scalar-Tensor Theory by GW170817 6 Propagation in F ( R ) Gravity by GW170817 7 Gravitational Wave from Early Universe or in Future? 8 Summary 9 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 4 / 29

  5. Example: Scalar Tensor Theory ∫ d 4 x √− g L φ , L φ = − 1 2 ω ( φ ) g µν ∂ µ φ∂ ν φ − V ( φ ) , S φ = ⇒ T µν = − ω ( φ ) ∂ µ φ∂ ν φ + g µν L φ , ⇒ δ T µν = h µν L φ + 1 2 g µν ω ( φ ) ∂ ρ φ∂ λ φ h ρλ , S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 5 / 29

  6. Assuming a FRW spatially flat metric ds 2 = − dt 2 + a ( t ) 2 ∑ ( dx i ) 2 , i =1 , 2 , 3 and φ = φ ( t ), we may choose φ = t ( ) 2 ) ( ) ⇒ ω ( φ ) ∂ µ φ∂ µ = ˜ ( ) φ∂ µ ˜ ( ) ( ( )) φ ′ ( ˜ ˜ ∂ µ ˜ ˜ ˜ ˜ , φ = φ φ ω φ φ , ˜ ω φ ≡ ω φ φ φ ( ) H ≡ ˙ a the FRW equations a ( H + 3 H 2 ) κ 2 H 2 = ω 3 − 1 = ω 2 ˙ 2 + V , 2 − V , κ 2 ( H + 3 H 2 ) ⇒ ω = − 2 V = 1 κ 2 ˙ ˙ H , . κ 2 Then ( t ) α V ( φ ) = 3 α 2 − α 2 α a ( t ) = ⇔ ω ( φ ) = 0 φ 2 , 0 φ 2 . κ 2 t 2 κ 2 t 2 t 0 t 0 , α : real constants S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 6 / 29

  7. 2 ⇔ α = 3 (1 + w ) . w : equation of state (EoS) parameter (when Universe is filled with perfect fluid). w = 0 ⇔ dust ∼ cold dark matter (CDM) 4 2 ω ( φ ) = 0 φ 2 , V ( φ ) = 0 φ 2 . 3 κ 2 t 2 3 κ 2 t 2 w = 1 3 ⇔ radiation 1 1 ω ( φ ) = 0 φ 2 , V ( φ ) = 0 φ 2 . κ 2 t 2 4 κ 2 t 2 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 7 / 29

  8. Example: Quantum Thermodynamical Scalar Field Free real scalar field φ with mass M ( ) − 1 2 g ρσ ∂ ρ φ∂ σ φ − 1 2 M 2 φ 2 T µν = ∂ µ φ∂ ν φ + g µν . Estimation in finite temperature T and chemical potential µ in the flat background, ⟨ ⟩ 1 ∫ ∞ e − β ( k 2 + M 2 ) 2 − i µ k 4 : ∂ T ij 1 12 π 2 δ ij δ kl : = √ . dk k 2 + M 2 1 ∂ g kl 1 − e − β ( k 2 + M 2 ) 2 − i µ 0 T S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 8 / 29

  9. Tensor structures: ⟨ ⟩ � ( ) � : ∂ T ij ∂ T ij ∝ 1 ∝ δ ij δ kl ⇔ � δ k i δ l j + δ l i δ k : � j ∂ g kl ∂ g kl 2 T Scalar Tensor Theory ⇐   ( ) ∑ ∂ T ij = 1  + 1  π 2 − ( ∂ n φ ) 2 − M 2 φ 2 δ k i δ l j + δ l i δ k 2 δ ij ∂ k φ∂ l φ . j ∂ g kl 4 n =1 , 2 , 3 In case of thermal quanta, ( ) E 2 − k 2 − M 2 = 0 1st term= 0 by on-shell condition , ⟨ k k k l ⟩ ∝ δ kl . 2nd term ∼ ( ) M 2 φ 2 ⇒ V ( φ ) In case of scalar tensor theory , φ = φ ( t ) ⇒ 2nd term= 0. S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 9 / 29

  10. When the number N of the particles is fixed N = N 0 and T → 0 ( ⇔ Cold Dark Matter (CDM)) � ⟨ ⟩ � : ∂ T ij = ∂ T ij � : = 0 , � ∂ g kl ∂ g kl T =0 , N = N 0 Scalar Tensor Theory but in general, � ⟨ ⟩ � : ∂ T ij ̸ = ∂ T ij � : , � ∂ g kl ∂ g kl T Scalar Tensor Theory for example, w = 1 3 (radiation). S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 10 / 29

  11. Speed of Propagation B. P. Abbott et al. [LIGO Scientific and Virgo Collaborations], “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119 (2017) no.16, 161101 arXiv:1710.05832 [gr-qc] Gravitational Wave from Neutron Star Merger � � � c 2 � � < 6 × 10 − 15 . � � GW − 1 � c 2 c : propagating speed of the light c GW : the propagating speed of the gravitational wave S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 11 / 29

  12. In case of covariant Galileon model C. Deffayet, G. Esposito-Farese and A. Vikman, “Covariant Galileon,”, Phys. Rev. D 79 (2009) 084003, doi:10.1103/PhysRevD.79.084003, [arXiv:0901.1314 [hep-th]] (( ) ) 2 − ∇ µ ∇ ν φ ∇ µ ∇ ν φ ∇ 2 φ L = X + G 4 ( X ) R + G 4 , X , X = − 1 2 ∂ µ φ∂ µ φ , G 4 ( X ) = M 2 + 2 c 0 φ + 2 c 4 X 2 , Pl Λ 6 2 M Pl 4 c 4 term induces the modification of the effective metric for the gravitational wave, g µν → g µν + C ∂ µ φ∂ ν φ , � � � � ˙ � c 2 � � 4 c 4 x 2 � φ � GW � � � ⇒ − 1 � = � , x = . � � c 2 1 − 3 c 4 x 2 HM Pl J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories,” arXiv:1710.05893. S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 12 / 29

  13. Propagation of Light ( √− gg µρ g νσ F ρσ ) 1 = ∇ 2 A ν − ∇ ν ∇ µ A µ + R µν A µ , 0 = ∇ µ F ν µ = √− g ∂ µ ⇒ ∑ 0 = ∂ i ( ∂ i A t − ∂ t A i ) , i =1 , 2 , 3   ∑ 0 = ( ∂ t + H ) ( ∂ i A t − ∂ t A i ) + a − 2  △ A i − ∂ i  , ∂ j A j j =1 , 2 , 3 by assuming a FRW spatially flat metric ds 2 = − dt 2 + a ( t ) 2 ∑ ( dx i ) 2 , i =1 , 2 , 3 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 13 / 29

  14. Landau gauge: √− g ∂ µ ( √− gg µν A ν ) = − ∂ t A t + 3 HA t + a − 2 ∑ 1 0 = ∇ µ A µ = i =1 , 2 , 3 ∂ i A i ⇒ 0 = ∇ 2 A ν + R µν A µ . Assume 0 = A t = ∑ i =1 , 2 , 3 ∂ i A i ( ) A i + a − 2 △ A i . ∂ 2 0 = − t + H ∂ t S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 14 / 29

  15. de Sitter space-time H = H 0 , a = e H 0 t . Assume A i ∝ e i k × (the part only depending on t ) △ by − k 2 ≡ − k · k . s ≡ e − H 0 t ( d 2 ) ds 2 + k 2 ⇒ 0 = A i , H 2 0 ( k ) ⇒ A i = A i 0 cos s + θ 0 . H 0 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 15 / 29

  16. Propagation in Scalar-Tensor Theory by GW170817 Gravitational wave in de Sitter space-time by cosmological constant, u = k h ij = s − 1 2 l ij . s , H 0 ⇒ ( ) ( 5 ) 2 d 2 du 2 + 1 2 0 = u + 1 − l ij , u 2 Bessel’s differential equation ⇒ Bessel functions J ± 5 2 ( u ). Black hole/neutron star merger s ≡ e − H 0 t ∼ 1. k H 0 ≫ 1. ( k ) h ij ∼ 1 s + ± 5 + 1 s cos π . H 0 4 ⇒ c = c GW . S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 16 / 29

  17. ( ) α t Power-law expansion a ( t ) = in Scalar-Tensor Theory. t 0 V ( φ ) = 3 α 2 − α 2 α ω ( φ ) = 0 φ 2 , 0 φ 2 . κ 2 t 2 κ 2 t 2 2 ∼ perfect fluid with a constant equation of state prameter w , α = 3(1+ w ) . H = α H = − α ˙ t , t 2 . Black hole/neutron star merger ⇒ H ∼ a constant, H ∼ H 0 . H 2 ∼ ˙ H ⇒ ˙ H ∼ a constant, ˙ H = H 1 ( ) t + △ H + 6 H 2 + H ∂ t − ∂ 2 2 ˙ 0 = h ij a 2 ⇒   ( 5 ) 2 − 2 H 1  d 2 du 2 + 1 H 2 2  l ij , 0 = u + 1 − 0 u 2 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 17 / 29

  18. Solution J ( u ). √ 1 − 4 H 1 ± 5 2 25 H 2 0 ( k s + ± 5 √ 1+ β + 1 ) h ij ∼ 1 β ≡ − 4 H 1 s cos π , , 25 H 2 H 0 4 0 The propagation of the light is not changed. The propagation of the gravitational wave is not changed, either. The difference is in phase, β = − 4 25 α = − 6(1 + w ) , 25 S. Nojiri (Nagoya U. & KMI) Gravitational Wave in Modified Gravities Aug. 9, 2018 18 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend