yong tang
play

Yong Tang University of Tokyo KEK-PH, 2018 YL. Wu & Y. Tang , - PowerPoint PPT Presentation

Thermal Gravitational Contribution to Dark Matter Production Yong Tang University of Tokyo KEK-PH, 2018 YL. Wu & Y. Tang , 1708.05138, 1604.04701 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 1


  1. Thermal Gravitational Contribution to Dark Matter Production Yong Tang University of Tokyo KEK-PH, 2018 YL. Wu & Y. Tang , 1708.05138, 1604.04701 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 1

  2. � � ��� � � � � ��� � �� �� � � ��� �� ���� ���� ������ ��������� �� �������� ���� �� ������� � �� � ��� � � ���� ����� ����� �� �� ������ � � ������ � ���� � � � ����� � � � � � � ��� �� ������ ���� ����� ����� ���� ��� �������� ������ �� �������� ��� ����� ���� ������ ������������ �������� ������������ ����� ���� ��� ���� �� � Evidence of Dark Matter • Galactic Rotation Curve • Gravitational Lensing • Large Scale Structure • CMB anisotropies, • … � � � � Millenium simulation " Ω X ' 0 . 26 All confirmed evidence indicates DM at least has on of gravitational interaction. � ��������� � ��� � �� �� � � Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 2

  3. DM Scenarios Gravity SM DM Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 3

  4. DM Scenarios Gravity SM DM New Interaction Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 4

  5. DM Scenarios Gravity SM DM New Interaction Weakly Interacting Massive Particle • Mass around ~100GeV • Coupling ~ 0.5 • Correct relic abundance Ω ~0.3 • Searches for CDM • Collider qq > XXj Indirect detection Collider search • Direct Xq > Xq • Indirect XX > qq • Theoretically interesting Direct detection Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 5

  6. DM Scenarios Gravity SM DM New Interaction 10 9 GeV 10 − 22 eV 10GeV 10 38 GeV 100TeV 10keV Primordial black hole Weakly Interacting Axion like scalar Sterile Neutrino WIMPZILLA Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 6

  7. What if only Gravity? Gravity SM DM • Gravitational interaction is very weak. • One may wonder whether DM can be produced. • We shall show gravity can be strong enough to play… Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 7

  8. What if only Gravity? Gravity SM DM Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 8

  9. Gravitational Contributions • Non-Thermal ( well-studied ) e.g. Ema, Jinno, Mukaida&Nakayama, 1502.02475,1604.08898 and refs. therein • Expansion of cosmic background • QFT in curved spacetime n X ∝ H 3 • Vacuum Fluctuation m X ∝ H • Bogoliubov transformation • Thermal scattering ( ) T > H or m φ • EFT for E<<M p L int = κ 2 h µ ν T µ ν , 1 √ Wu&Tang , 1604.04701, 1708.05138 32 π G ∼ κ = M P Gary,Sandora,Sloth&Palessandro ,1511.03278,1709.09688 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 9

  10. EFT in Einstein’s Gravity • Einstein-Hilbert action  � Z 1 L = √− g L d 4 x , S = 16 π GR + L m • EFT for E<<M p Justified after inflation L int = κ 2 h µ ν T µ ν , Energy-Momentum Tensor T µ ν = − ⌘ µ ν @ α S † @ α S + ⌘ µ ν m 2 S S † S + @ µ S † @ ν S + @ ν S † @ µ S, S @ F − m F FF � + 1 2 Fi � µ @ ν F + 1 T µ ν = − ⌘ µ ν � Fi/ 2 Fi � ν @ µ F F 4 @ ν � Fi � µ F � , + 1 2 ⌘ µ ν @ α � Fi � α F � − 1 4 @ µ � Fi � ν F � − 1 V V µ V ν � , ✓ 1 ◆ 4 F αβ F αβ − 1 T µ ν = ⌘ µ ν 2 m 2 V V α V α − � F µ α F να − m 2 V =1 Non-minimal coupling T µ ν 4 ⌘ µ ν F αβ F αβ − F µ α F να . γ ζ S † SR → 2 ζ ( ∂ µ ∂ ν − η µ ν ∂ α ∂ α ) S † S √ Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 10

  11. Annihilation Processes • Boltzmann Equation � � a 3 n n + 3 Hn ≡ d = C col ˙ a 3 dt • Reduced to ✓ √ s � a 3 n � = g 2 T ◆ d Z ds σ √ s ( s − 4 m 2 ) K 1 , a 3 dt 32 π 4 T • The core Massless limit σ ∝ κ 4 s  4 | ~ p f | Wu&Tang 1604.04701 � = p i | A 32 ⇡ s ( Sg 2 i ) | ~ p p | ~ p i | = s 2 / 4 − m 2 , | ~ p f | = s 2 / 4 − M 2 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 11

  12. Various Contributions • Scalar Wu&Tang 1708.05138 A ( S → S ) =7 m 4 M 4 − m 2 M 2 m 2 + M 2 � � , 30 s 2 30 s + s 2 + 1 s m 4 + 4 m 2 M 2 + M 4 � m 2 + M 2 � � � + 240 , 40 120 A ( F → S ) = − 7 m 4 M 4 − m 2 M 2 ( M 2 − 4 m 2 ) 15 s 2 60 s 240(4 M 2 − m 2 ) + s 2 + 1 s 2 M 4 + 3 m 2 M 2 − 3 m 4 � � 480 , − 60 A ( V → S ) =101 m 4 M 4 − m 2 M 2 11 M 2 + m 2 � � 30 s 2 10 s + s 2 1 − 7 s 19 M 4 + 76 m 2 M 2 + 49 m 4 � m 2 + M 2 � � � + 80 , 120 120 A ( � → S ) = 1 s − 4 M 2 � 2 , � 120 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 12

  13. Various Contributions • Fermion Wu&Tang 1708.05138 A ( F ! F ) =14 m 4 M 4 + m 2 M 2 m 2 + M 2 � � , 15 s 2 30 s + s 2 1 s 8 m 4 � 3 m 2 M 2 + 8 M 4 � m 2 + M 2 � � � 160 , � � 120 120 A ( V ! F ) = � 101 m 4 M 4 + m 2 M 2 44 M 2 � m 2 � � 15 s 2 20 s + 13 s 2 � 1 s 7 M 2 + 52 m 2 � 19 M 4 � 19 m 2 M 2 � 26 m 4 � � � 480 , � 60 240 A ( γ ! F ) = 1 � s � 4 M 2 � (3 s + 8 M 2 ) , 120 • Vector A ( V ! V ) =2983 m 4 M 4 � 293 m 2 M 2 m 2 + M 2 � � , 30 s 2 10 s + 29 s 2 1 � 37 s 257 m 4 + 1188 m 2 M 2 + 257 M 4 � m 2 + M 2 � � � + 240 , 120 40 A ( γ ! V ) = 13 s � 4 M 2 � 2 , � 120 A ( γ ! γ ) = s 2 10 . Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 13

  14. Parameter Space • Dark Matter X , 10 16 scalar Ω X = 0 . 258 fermion • Below DM m X, ↑Ω X 10 15 vector power-law; 
 T max [ GeV ] Above, log ↓Ω X 10 14 m X = T max • Similar for diff 
 10 13 spins. 10 12 Wu&Tang 1708.05138 10 4 10 6 10 8 10 10 10 12 10 14 10 16 m X [ GeV ] Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 14

  15. Effects of Inflation • The temperature after inflation is determined by the reheating process, usually the decay of the inflaton. φ + 3 H ˙ ¨ φ + Ŵ φ ˙ φ + V ′ ( φ ) = 0 , V ( φ ) = 1 2 m 2 φ φ 2 ∗ = φ ≃ T R = � Ŵ φ M P maybe T R > m φ • Another important effect 
 is from inflaton annihilation. . reheating Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 15

  16. Annihilation from Inflaton • The energy density during 
 φ X inflation is much lower than 
 Planck scale φ X  4 | ~ p f | � = p i | A 32 ⇡ s ( Sg 2 i ) | ~ M = M X m = m φ A = 1 • Scalar 2(1 − 6 ζ ) m 2 + M 2 ⇤ 2 ⇥ 32 • Fermion 1 helicity suppression 16 M 2 � m 2 − M 2 � • Vector 1 4 m 4 − 4 m 2 M 2 + 3 M 4 � � 32 • Massless vector 0 Wu&Tang 1708.05138 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 16

  17. Parameter Space • For massive scalar and vector = � ≃ � Ŵ φ � 1 / 2 Y X ≃ H ∗ T R ≃ m φ M 2 M P M P P • Fermion is suppressed 
 by a factor M 2 f /m 2 φ • Production from inflaton 
 annihilation could be 
 dominant Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 17

  18. Possible Signatures • If stable, no signal in Direct/Indirect/Collider… • If unstable, decay products can be shown as anomalies in astrophysical observables Wu&Tang 1604.04701 Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 18

  19. Summary • Gravitational contributions to dark matter production can be important for non-WIMP case • We consider the contribution due to thermal SM particles’ gravitational annihilation • Inflation plays two important roles • Reheating temperature • Inflaton’s gravitational annihilation • Possible astrophysical signatures if DM decay. Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 19

  20. Thanks for your attention. Yong TANG(U.Tokyo) Thermal Gravitational Contribution to DM KEK-PH 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend