global existence of smooth solutions to a cross diffusion
play

Global Existence of Smooth Solutions to a Cross-Diffusion System - PowerPoint PPT Presentation

Global Existence of Smooth Solutions to a Cross-Diffusion System Tuoc V. Phan University of Tennessee - Knoxville, TN TexAMP 2013 at Rice University Oct. 25 - 27, 2013 Joint work with Luan T. Hoang (Texas Tech U.) and Truyen V. Nguyen (U. of


  1. Global Existence of Smooth Solutions to a Cross-Diffusion System Tuoc V. Phan University of Tennessee - Knoxville, TN TexAMP 2013 at Rice University Oct. 25 - 27, 2013 Joint work with Luan T. Hoang (Texas Tech U.) and Truyen V. Nguyen (U. of Akron) SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  2. SKT cross-diffusion system Let Ω ⊂ R n be open, smooth, bounded and n ≥ 2. Consider the Shigesada-Kawasaki-Teramoto system of equations  u t = ∆[( d 1 + a 11 u + a 12 v ) u ] + u ( a 1 − b 1 u − c 1 v ) , Ω × ( 0 , ∞ ) ,     v t = ∆[( d 2 + a 21 u + a 22 v ) v ] + v ( a 2 − b 2 u − c 2 v ) , Ω × ( 0 , ∞ ) ,   with homogenous Newman boundary conditions and u ( · , 0 ) = u 0 ( · ) ≥ 0 , v ( · , 0 ) = v 0 ( · ) ≥ 0 in Ω . This system models the segregation phenomena of two competing species. u and v denote the population densities of two species. d k , a k , b k , c k > 0 and a ij ≥ 0 are constants; a 11 , a 22 are self-diffusion coefficients and a 12 , a 21 are cross-diffusion coefficients. SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  3. Divergence form The PDE of the SKT system can be written in the divergence form: U t = ∇ · [ J ( U ) ∇ U ] + F ( U ) , where � � � � u d 1 + 2 a 11 u + a 12 v a 12 v U = , J ( U ) = , d 2 + a 21 u + 2 a 22 v v a 21 u and � � u ( a 1 − b 1 u − c 1 v ) F ( U ) = . v ( a 2 − b 2 u − c 2 v ) SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  4. Local well-posedness: H. Amann Theorem Theorem (H. Amann, 1990) Let p 0 > n and U 0 ∈ W 1 , p 0 (Ω) 2 with non-negative entry. Then, there exists maximal existence time t max > 0 such that the SKT system  U t = ∇ · [ J ( U ) ∇ U ] + F ( U ) , Ω × ( 0 , ∞ ) ,    ∂ U  = 0 , ∂ Ω × ( 0 , ∞ ) ,  ∂� ν    U ( · , 0 ) = U 0 , Ω ,   has unique, local non-negative solution U = ( u , v ) T with U ∈ C ([ 0 , t max ); W 1 , p 0 (Ω) 2 ) ∩ C ∞ (Ω × ( 0 , t max )) 2 . Moreover, if t max < ∞ then � � lim � U ( · , t ) � W 1 , p 0 (Ω) × W 1 , p 0 (Ω) = ∞ . � � t → t − max SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  5. Global or finite time blow-up solution? The solution for the STK system when J is a FULL 2 × 2 matrix, i.e. � � d 1 + 2 a 11 u + a 12 v a 12 v J ( U ) = , d 2 + a 21 u + 2 a 22 v a 21 u exists globally in time or has finite time blow up? Vastly Unknown . We restrict our study on the case when a 21 = 0, that is � � d 1 + 2 a 11 u + a 12 v a 12 v J ( U ) = . 0 d 2 + 2 a 22 v Let us call the SKT system with this J : Triangular SKT System. SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  6. Triangular SKT: Known results The Triangular SKT System, i.e.  = ∇ · [ J ( U ) ∇ U ] + F ( U ) , Ω × ( 0 , ∞ ) , U t    ∂ U  = 0 , ∂ Ω × ( 0 , ∞ ) ,  ∂� ν    U ( · , 0 ) = U 0 , Ω ,   with � � d 1 + 2 a 11 u + a 12 v a 12 v J ( U ) = , 0 d 2 + 2 a 22 v has global solution when n ≤ 9. Y. Lou, W.-M. Ni and J. Wu (1998): n = 2. D. Le, L. Nguyen, T. Nguyen (2003); Y. Choi, R. Lui, Y. Yamada (2004): n ≤ 5. T. P . (2008): n ≤ 9. Many other results: Restrictive conditions on the coefficients. SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  7. Today main result Theorem (L. Hoang, T. Nguyen and T. P . – 2013) Let Ω ⊂ R n be open, bounded for any n ≥ 2 , and let U 0 ∈ [ W 1 , p 0 (Ω)] 2 with p 0 > n. Then, the solution U = ( u , v ) T of the Triangular SKT system  U t = ∇ · [ J ( U ) ∇ U ] + F ( U ) , Ω × ( 0 , ∞ ) ,     ∂ U = 0 , ∂ Ω × ( 0 , ∞ ) ,  ∂� ν    U ( · , 0 ) = U 0 , Ω ,   where � � d 1 + 2 a 11 u + a 12 v a 12 v J ( U ) = d 2 + 2 a 22 v 0 exists uniquely, globally in time and � 2 � 2 � � C ([ 0 , ∞ ); W 1 , p 0 (Ω)) C ∞ (Ω × ( 0 , ∞ )) . U ∈ ∩ SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  8. Ideas of the proof Let T > 0 be the maximal time existence and assume T < ∞ , we prove by contradiction that � � � � � � � u ( · , t ) � W 1 , p 0 (Ω) + � v ( · , t ) < ∞ . lim � � � � � W 1 , p 0 (Ω) t → T − Sufficient to establish the bound (0 < ǫ ≪ 1) �∇ v � L p (Ω × ( ǫ, T )) + � u � L p (Ω × ( ǫ, T )) ≤ C ( T ) , p > n + 2 . Important known estimates: (i) Maximum Principle (Lou-Ni-Wu, 2003): The PDE of v is v t = ∇ · [( d 2 + 2 a 22 v ) ∇ v ] + v ( a 2 − b 2 u − c 2 v ) . � � max Ω v 0 , a 2 . However, M.P Therefore, 0 ≤ v ≤ max . is not c 2 available for u , b/c u t = ∇ · [( d 1 + 2 a 11 u + a 12 v ) ∇ u + a 12 u ∇ v ] + u ( a 1 − b 1 u − c 1 v ) . (ii) T. P . (2008): �∇ v � L 4 (Ω × ( 0 , T )) ≤ C ( T ) . SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  9. Key iteration lemma The PDE of u : u t = ∇ · [( d 1 + 2 a 11 u + a 12 v ) ∇ u + a 12 u ∇ v ] + u ( a 1 − b 1 u − c 1 v ) . Lemma Let p > 2 and assume that �∇ v � L p (Ω T ) ≤ C ( p , T ) . � � p ( n + 1 ) p , Then for each q ∈ with q � ∞ , we have ( n + 2 − p ) + � u � L q (Ω T ) ≤ C ( p , q , T ) . Main question: If u ∈ L q (Ω T ) , can we derive the estimate �∇ v � L q (Ω T ) ≤ C ( q , p , T ) ? SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  10. Regularity problem The PDE of v : v t = ∇ · [( d 2 + 2 a 22 v ) ∇ v ] + v ( a 2 − c 2 v ) − b 2 uv , in Ω × ( 0 , T ) . Goal: To establish � � �∇ v � L p (Ω × ( 0 , T )) ≤ C 1 + � u � L p (Ω × ( 0 , T )) . Difficulties: (i) Main term ( d 2 + 2 a 22 v ) depends on solution. Therefore, its oscillation is not small. (ii) The equation is not invariant under either of the scalings v ( x , t ) → v ( θ x , θ 2 t ) v ( x , t ) → v ( x , t ) or , λ, θ > 0 . λ θ (iii) The equation is not invariant under the change of coordinates. SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  11. Equations with double scaling parameters Denote Ω T = Ω × ( 0 , T ) , we study the equation: ∇ · [( 1 + λα w ) A ∇ w ] + θ 2 w ( 1 − λ w ) − λθ cw  = in Ω T , w t    ∂ w   = on ∂ Ω × ( 0 , T ) ,  0  ∂� ν    w ( · , 0 ) = w 0 ( · ) Ω .  in  Here, θ, λ > 0 and α ≥ 0 are constants, c ( x , t ) is a nonnegative measurable function, A = ( a ij ) : Ω T → M n × n is symmetric, measurable and ∃ Λ > 0 such that Λ − 1 | ξ | 2 ≤ ξ T A ( x , t ) ξ ≤ Λ | ξ | 2 for a.e. ( x , t ) ∈ Ω T and for all ξ ∈ R n . SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  12. Calder´ on - Zygmund type estimates Theorem (L. Hoang, T. Nguyen and T. P ., 2013) Let p > 2 . Then there exists a number δ = δ ( p , Λ , n , α ) > 0 such that if Ω is a Lipschitz domain with the Lipschitz constant ≤ δ and [ A ] BMO (Ω T ) ≤ δ , then for any weak solution w of ∇ · [( 1 + λα w ) A ∇ w ] + θ 2 w ( 1 − λ w ) − λθ cw  = in Ω T , w t    ∂ w    = on ∂ Ω × ( 0 , T ) , 0  ∂� ν    w ( · , 0 ) = w 0 ( · ) Ω .  in  satisfying 0 ≤ w ≤ λ − 1 in Ω T , we have �� θ � p � ˆ ˆ |∇ w | p dxdt ≤ C | c | p dxdt λ ∨ � w � L 2 (Ω T ) + Ω × [¯ t , T ] Ω T for every ¯ t ∈ ( 0 , T ) . Here C > 0 is a constant depending only on Ω , ¯ t, p, Λ , α and n and independent of θ, λ . SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  13. Main steps in the proof (interior estimates) P erturbation technique (Caffarelli–Peral): Comparing the solution of w t = ∇ · [( 1 + λα w ) A ∇ w ] + θ 2 w ( 1 − λ w ) − λθ cw in Q 6 (1) with that of the reference equation h t = ∇ · [( 1 + λα h )¯ A B 4 ( t ) ∇ h ] + θ 2 h ( 1 − λ h ) Q 4 , in (2) where ¯ A B 4 ( t ) is the average of A ( · , t ) over B 4 , that is, 1 ˆ ¯ A B 4 ( t ) := A ( x , t ) dx . | B 4 | B 4 Notice that h is a weak solution of (2) iff ¯ h := λ h is a weak solution of h t = ∇ · [( 1 + α ¯ ¯ h )¯ A B 4 ( t ) ∇ ¯ h ] + θ 2 ¯ h ( 1 − ¯ h ) Q 4 . in SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

  14. Gradient estimate of solutions for the reference equation Lemma Let ¯ h be a weak solution of h t = ∇ · [( 1 + α ¯ ¯ h )¯ A B 4 ( t ) ∇ ¯ h ] + θ 2 ¯ h ( 1 − ¯ h ) in Q 4 satisfying 0 ≤ ¯ h ≤ 1 in Q 4 . Then L ∞ ( Q 3 ) ≤ C ( n , Λ , α ) 1 ˆ h | 2 dxdt . �∇ ¯ h � 2 |∇ ¯ | Q 4 | Q 4 Key Ideas: De Giorgi - Nash - Moser. SKT Cross-Diffusion, W 1 , p -estimate, Global solution T. V. Phan (U. of Tennessee - Knoxville) - TexAMP 2013

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend