gla2011
play

GLA2011 Very Short Baseline Neutrino Oscillation Experiments using - PowerPoint PPT Presentation

GLA2011 Very Short Baseline Neutrino Oscillation Experiments using Cyclotron Decay-at-Rest Sources Sanjib Kumar Agarwalla (Sanjib.Agarwalla@ific.uv.es) IFIC/CSIC, University of Valencia, Spain Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland,


  1. GLA2011 Very Short Baseline Neutrino Oscillation Experiments using Cyclotron Decay-at-Rest Sources Sanjib Kumar Agarwalla (Sanjib.Agarwalla@ific.uv.es) IFIC/CSIC, University of Valencia, Spain Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.1/25

  2. Short-baseline ν oscillation Recent results from short-baseline neutrino experiments hint towards high ∆ m 2 ∼ 0.1–10 eV 2 oscillation Are they pointing towards Sterile ν s or something else? Short-baseline means : L/E ∼ 1 (m/MeV or km/GeV) LSND : L = 30 m, < E ν ¯ µ > = 40 MeV 3 . 8 σ excess of ¯ ν e events in a beam of ¯ ν µ MiniBooNE : L = 541 m, < E ν µ ,ν ¯ µ > = 700 MeV A 2 . 8 σ excess of ¯ ν e events in the anti-neutrino mode above 475 MeV , consistent with LSND Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.2/25

  3. SBL ν oscillation continued.. No oscillation in the ν -mode for energies above 475 MeV An unexplained 3 σ excess of ν e events in the ν -mode of MiniBooNE below 475 MeV No hint of steriles in MiniBooNE ν µ / ¯ ν µ disappearance Recent Reactor Anomaly Reanalysis of reactor fluxes in Mueller et al., (arXiv:1101.2663) shows 2.5% upward shift in flux Overall reduction in predicted flux compared to existing data can be interpreted as oscillations at baselines of order 10–100 m (arXiv:1101.2755) Gallex-Sage reduced calibration source rate also suggesting possible ν e disappearance Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.3/25

  4. What do we need? We have both positive and negative hints for sterile high ∆ m 2 oscillation. Nothing is conclusive !! We need powerful new experiments to have appearance and disappearance searches at high significance involving both neutrinos and anti-neutrinos Combine powerful new multi-kiloton liquid scintil- lator, argon or water detectors with a modest power decay-at-rest neutrino source at short-baseline Observe the L/E dependence of the oscillation wave across the length scales of these detectors SKA, Patrick Huber, arXiv:1007.3228 SKA, J.M. Conrad, M.H. Shaevitz, arXiv:1105.4984 Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.4/25

  5. Stopped Pion Source 800 MeV protons from cyclotrons interact in a low-A target (C, H 2 O) producing π + and, at a low level, π − p + X → π ± + X ′ Low-A target is embedded in a high-A, dense material where pions are brought to rest π − & daughter µ − captured before DIF, minimizing ¯ ν e π + decay produces mono-energetic 29.8 MeV ν µ & µ + π + → µ + + ν µ µ + decays at rest, providing Michel spectrum µ + → e + + ν e + ¯ ν µ Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.5/25

  6. Decay At Rest (DAR) Source µ + + ν µ π + → | → e + + ν e + ¯ ν µ ν µ ν µ ) -1 s ν -1 e Φ (MeV 0 10 20 30 40 50 60 E ν (MeV) Provides an equal, high-intensity, isotropic, DAR ν µ , ν e and ¯ ν µ ν e contamination ( 4 × 10 − 4 ) beam with tiny ¯ Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.6/25

  7. Cyclotron : Proton Source Mike Shaevitz, SBNW11, Fermilab Cyclotrons : ideal low-cost source for low energy protons Bunch spacing ∼ few tens of ns, continuous source Average beam power, 10 - 100 kW, prototypes for DAE δ ALUS Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.7/25

  8. Neutrino Source Details 4 × 10 21 per year, per flavor ( ν µ , ¯ ν µ and ν e ), 1 . 6 × 10 18 per year of ¯ ν e ( 4 × 10 − 4 compared to other flavors); Delivered as 100 kW average power, with 200 kW instantaneous power, (50% duty factor allowing equal beam-on and beam-off data sets); 800 MeV protons on target; ± 25 cm smearing (assumed flat) on neutrino production point; 20 m distance from average production point to face of detector fiducial region. p/ π ratio uncertain : conservative 10% correlated normalization error on all flavors 20% normalization error on the π − DIF background No uncertainty in the shape of the energy spectrum Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.8/25

  9. DAR beam interactions 1e−39 ν µ → ¯ ¯ ν e Appearance ν e + p → e + + n (IBD) [ cm ] ¯ 2 1e−40 Cross−section Free protons : Liquid scintillator oil, H 2 O 1e−41 Low kinematic threshold : 1.81 MeV Coincidence tag between prompt positron ν + p n [IBD] ( ) e e , 1e−42 40 40 * ν − and the delayed neutron capture by a proton Ar K ( ) e e , 12 12 ν e , e − C N ( ) g.s. n + p → d + γ (2.2 MeV) after ∼ 250 µ s 1e−43 10 15 20 25 30 35 40 45 50 Neutrino energy [MeV] ν e → ν e Disappearance ν e + 12 C → e − + 12 N g . s . Threshold 17.33 MeV, well measured, ∼ 5 to 10% uncertainty prompt e − , followed within a 60 ms window by e + from β -decay of the 12 N g . s . , mean τ 15.9 ms ν e + 40 Ar → e − + 40 K ⋆ Threshold 4.24 to 5.89 MeV depending on which 40 K ⋆ It has the highest cross-section in the energy range of interest, excellent for Disappearance studies Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.9/25

  10. 3+1 SBL oscillations Add one sterile ν with three active ones at the eV scale SBL approximation : ∆ m 2 21 ≈ ∆ m 2 31 ≈ 0 and x ij ≡ ∆ m 2 ij L/ 4 E ν e ) = 4 | U e 4 | 2 | U µ 4 | 2 sin 2 x 41 ≡ sin 2 2 θ µe sin 2 x 41 P (¯ ν µ → ¯ 41 = 0.57 eV 2 and sin 2 2 θ µe = 0.0097 using LSND, MB- ¯ Example Fit : ∆ m 2 ν , KARMEN (Karagiorgi et al., arXiv:0906.1997) P ( ν e → ν e ) = 1 − 4 | U e 4 | 2 (1 − | U e 4 | 2 ) sin 2 x 41 ≡ 1 − sin 2 2 θ ee sin 2 x 41 41 = 1.78 eV 2 and sin 2 2 θ ee = 0.089 using all reactor data Example Fit : ∆ m 2 with new fluxes (J. Kopp et al., arXiv:1103.4570) No CPV : can’t reconcile ¯ ν (LSND, MB) and ν (MB) data Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.10/25

  11. 3+2 SBL oscillations Add two sterile neutrinos with three active ones at the eV scale SBL approximation : ∆ m 2 21 ≈ ∆ m 2 31 ≈ 0 and x ij ≡ ∆ m 2 ij L/ 4 E 4 | U e 4 | 2 | U µ 4 | 2 sin 2 x 41 + 4 | U e 5 | 2 | U µ 5 | 2 sin 2 x 51 P (¯ ν µ → ¯ ν e ) = + 8 | U e 4 U µ 4 U e 5 U µ 5 | sin x 41 sin x 51 cos( x 54 + δ ) δ ≡ arg ( U ∗ e 4 U µ 4 U e 5 U ∗ µ 5 ) is the CP -phase 1 − 4(1 − | U e 4 | 2 − | U e 5 | 2 )( | U e 4 | 2 sin 2 x 41 + | U e 5 | 2 sin 2 x 51 ) P ( ν e → ν e ) = 4 | U e 4 | 2 | U e 5 | 2 sin 2 x 54 − ∆ m 2 ∆ m 2 | U e 4 | | U µ 4 | | U e 5 | | U µ 5 | δ/π 41 51 A : arXiv:1103.4570 0.47 0.128 0.165 0.87 0.138 0.148 1.64 B : arXiv:0906.1997 0.39 0.40 0.20 1.10 0.21 0.14 1.1 Global best-fit points for (3+2) model. Mass splittings are shown in eV 2 Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.11/25

  12. LENA Scintillation Detector 50 kt Fiducial (Unsegmented) 100 m tall by 30 m diameter Source-to-detector-face = 20 m Low detection threshold Excellent Vertex and Energy Resolution Clear coincidence signal for ¯ ν e IBD events Deep underground location (4000 mwe) Negligible cosmic muon backgrounds Neutrino Energy threshold For appearance : E ν > 20 MeV For disappearance : E ν > 33 MeV Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.12/25

  13. Appearance wave in LENA 50 kt LENA (Appearance mode) [ With Osc/Full Transmutation ] 0.01 Bin and fit IBD data with reconstructed L/E 0.009 (3+1) fit : Karagiorgi et al., arXiv:0906.1997 0.008 0.007 (3+1) 41 = 0.57 eV 2 & sin 2 2 θ µe = 0.0097 ∆ m 2 0.006 0.005 (3+2) fit : J. Kopp et al., arXiv:1103.4570 (3+2) 0.004 0.003 Event ratio Accessible L range : 20–120 m 0.002 DAR energy range : 20–52.8 MeV 0.001 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 L/E [m/MeV] SKA, J.M. Conrad, M.H. Shaevitz, arXiv:1105.4984 Oscillation wave is dramatic in the long LENA detector and can provide a powerful handle to discriminate between (3+1) and (3+2) schemes Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.13/25

  14. Appearance Event Rates ∆ m 2 ∆ m 2 | U e 4 | | U µ 4 | | U e 5 | | U µ 5 | δ/π 41 51 A : arXiv:1103.4570 0.47 0.128 0.165 0.87 0.138 0.148 1.64 B : arXiv:0906.1997 0.39 0.40 0.20 1.10 0.21 0.14 1.1 Intrinsic ¯ ν e Fiducial Mass Radius Length Signal Signal (A : 1103.4570) (B : 0906.1997) Background 50 kt 13.58 m 100 m 12985 32646 1450 25 kt 10.78 m 79.37 m 7787 18356 875 10 kt 7.94 m 58.48 m 3753 7964 443 5 kt 6.3 m 46.42 m 2080 4044 261 Signal and beam background events in 5 to 50 kt LENA Total 4 × 10 21 ¯ ν µ (100 kW source), efficiency 90% ν e beam contamination is 4 × 10 − 4 The intrinsic ¯ Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.14/25

  15. DAR-LENA ¯ ν µ → ¯ ν e Sensitivity σ σ DAR−LENA 5 DAR−LENA 5 (2 dof) (2 dof) 5 kt 5 kt 1 1 10 kt 10 kt 10 10 25 kt 25 kt 50 kt 50 kt 10 kW (1 year) 100 kW (1 year) [eV ] [eV ] 2 2 ν ν ( ) ( ) MiniBooNE + LSND MiniBooNE + LSND 99% CL (2 dof) 99% CL (2 dof) 0 0 2 2 ∆ m ∆ m 10 10 −1 −1 Appearance mode Appearance mode 10 10 −4 −3 −2 −1 −4 −3 −2 −1 10 10 10 10 10 10 10 10 2 2 θ 2 2 θ sin sin µ e µ e SKA, J.M. Conrad, M.H. Shaevitz, arXiv:1105.4984 5 kt LENA combined with a small 10 kW DAR source can test the LSND/MiniBooNE anti- neutrino signal at 5 σ CL in 3+1 model in 1 yr Sanjib K. Agarwalla, GLA2011, Jyvaskyla, Finland, 07/06/11 – p.15/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend