geometric numerical integration of differential equations
play

Geometric Numerical Integration of Differential Equations Ernst - PowerPoint PPT Presentation

Geometric Numerical Integration of Differential Equations Ernst Hairer Universit e de Gen` eve Aveiro, September 10 -14, 2018 E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration, Second edition, Springer-Verlag, 2006


  1. Geometric Numerical Integration of Differential Equations Ernst Hairer Universit´ e de Gen` eve Aveiro, September 10 -14, 2018 E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration, Second edition, Springer-Verlag, 2006 Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 1 / 43

  2. Summerschool in Aveiro (Sept. 2018), Ernst Hairer Part I. Geometric numerical integration ◮ Hamiltonian systems, symplectic mappings, geometric integrators, St¨ ormer–Verlet, composition and splitting, variational integrator ◮ Backward error analysis, modified Hamiltonian, long-time energy conservation, application to charged particle dynamics Part II. Differential equations with multiple time-scales ◮ Highly oscillatory problems, Fermi–Pasta–Ulam-type problems, trigonometric integrators, adiabatic invariants ◮ Modulated Fourier expansion, near-preservation of energy and of adiabatic invariants, application to wave equations Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 2 / 43

  3. Lecture 1. Introduction to geometric integration Introduction and examples 1 Explicit, implicit, and symplectic Euler Kepler and N-body problems Hamiltonian systems 2 Symplectic mappings Theorem of Poincar´ e Symplectic Euler methods St¨ ormer–Verlet integrator Symplectic integration methods 3 Runge–Kutta methods Composition and splitting methods Variational integrators Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 3 / 43

  4. Mathematical pendulum q q ˙ = p or q + sin q = 0 ¨ cos q p ˙ = − sin q The energy 2 2 p 2 − cos q H ( p , q ) = 1 1 is constant along solutions: −3 −2 −1 0 1 2 3 4 −1 � � H p ( t ) , q ( t ) = Const. −2 Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 4 / 43

  5. Mathematical pendulum q q ˙ = p or q + sin q = 0 ¨ cos q p ˙ = − sin q Proof. d � � d t H p ( t ) , q ( t ) = p ( t ) ˙ p ( t ) + sin( q ( t )) ˙ q ( t ) = 0 The energy 2 2 p 2 − cos q H ( p , q ) = 1 1 is constant along solutions: −3 −2 −1 0 1 2 3 4 −1 � � H p ( t ) , q ( t ) = Const. −2 Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 4 / 43

  6. Explicit Euler Implicit Euler q n +1 = q n + h p n q n +1 = q n + h p n +1 p n +1 = p n − h sin q n p n +1 = p n − h sin q n +1 2 2 1 1 −3 −2 −1 0 1 2 3 4 −3 −2 −1 0 1 2 3 4 −1 −1 −2 −2 Constant step size h = 0 . 3 in both cases. Initial values: large symbols. Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 5 / 43

  7. Symplectic Euler methods q n +1 = q n + h p n q n +1 = q n + h p n +1 p n +1 = p n − h sin q n +1 p n +1 = p n − h sin q n 2 2 1 1 −3 −2 −1 0 1 2 3 4 −3 −2 −1 0 1 2 3 4 −1 −1 −2 −2 Constant step size h = 0 . 4 in both cases. Same initial values: large symbols. Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 6 / 43

  8. Kepler problem (two-body problem) q i q i = p i , ˙ p i = − ˙ 2 ) 3 / 2 , i = 1 , 2 ( q 2 1 + q 2 exact solution in ( q 1 , q 2 )-space is an ellipse (drawn in red) 400 000 steps 1 h = 0 . 0005 −2 −1 1 −2 −1 1 4 000 steps −1 h = 0 . 05 explicit Euler symplectic Euler Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 7 / 43

  9. N-body problems The differential equation is given by q i = ∂ H p i = − ∂ H � � ˙ p , q ) , ˙ p , q ) , i = 1 , . . . , N ∂ p i ∂ q i where i − 1 N N H ( p , q ) = 1 1 � p T � � � � i p i + V ij � q i − q j � 2 m i i =1 i =2 j =1 V ij ( r ) = − G m i m j Astronomy (solar system): r � � σ ij 12 � σ ij 6 � � � Molecular dynamics (Lennard–Jones): V ij ( r ) = ε ij − r r Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 8 / 43

  10. Further examples of Hamiltonian systems Integrable Hamiltonian systems ◮ Toda lattice ◮ discretized Schr¨ odinger equation chaotic systems ◮ double (multiple) pendulum ◮ H´ enon–Heiles system rigid body dynamics ◮ free rigid body ◮ top, levitron Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 9 / 43

  11. Lecture 1. Introduction to geometric integration Introduction and examples 1 Explicit, implicit, and symplectic Euler Kepler and N-body problems Hamiltonian systems 2 Symplectic mappings Theorem of Poincar´ e Symplectic Euler methods St¨ ormer–Verlet integrator Symplectic integration methods 3 Runge–Kutta methods Composition and splitting methods Variational integrators Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 10 / 43

  12. Hamiltonian systems Differential equation: p i = − ∂ H q i = ∂ H � � � � ˙ p , q , ˙ p , q , i = 1 , . . . , d , ∂ q i ∂ p i where H : U → R and U ⊂ R d × R d . d . . . degree of freedom of the system. Different notation: p = −∇ q H ( p , q ) , ˙ q = ∇ p H ( p , q ) , ˙ or � 0 � p � � I y = J − 1 ∇ H ( y ) y = , J = . ˙ q − I 0 Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 11 / 43

  13. Example: classical mechanical systems minimal coordinates . . . q ∈ R d q ) = 1 q T M ( q ) ˙ kinetic energy . . . T ( q , ˙ 2 ˙ q potential energy . . . U ( q ) � � � variational principle: T ( q , ˙ q ) − U ( q ) dt → min ∂ d � � � � Euler-Lagrange equ. M ( q ) ˙ q = T ( q , ˙ q ) − U ( q ) ∂ q dt momenta (or Poisson variables) . . . p := M ( q ) ˙ q Euler-Lagrange is equivalent to the Hamilton system with H ( p , q ) = 1 2 p T M ( q ) − 1 p + U ( q ) Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 12 / 43

  14. Example: classical mechanical systems minimal coordinates . . . q ∈ R d q ) = 1 q T M ( q ) ˙ kinetic energy . . . T ( q , ˙ 2 ˙ q potential energy . . . U ( q ) � � � variational principle: T ( q , ˙ q ) − U ( q ) dt → min ∂ d � � � � Euler-Lagrange equ. M ( q ) ˙ q = T ( q , ˙ q ) − U ( q ) ∂ q dt momenta (or Poisson variables) . . . p := M ( q ) ˙ q Euler-Lagrange is equivalent to the Hamilton system with H ( p , q ) = 1 2 p T M ( q ) − 1 p + U ( q ) q = M ( q ) − 1 p = ∇ p H ( p , q ) Proof. ˙ p = 1 q ⊤ ∇ q M ( q ) ˙ ˙ 2 ˙ q − ∇ q U ( q ) = −∇ q H ( p , q ) Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 12 / 43

  15. Symplectic mappings – differential form Let P be the parallelogram spanned by ξ = ( ξ p 1 , . . . , ξ p d , ξ q 1 , . . . , ξ q d ) T and η = ( η p 1 , . . . , η p d , η q 1 , . . . , η q d ) T and d d � ξ p η p � � � � � ξ p i η q i − ξ q i η p i i ω ( ξ, η ) := det = ξ q η q i i i i =1 i =1 the sum of the oriented areas of the projections of P onto the coordinate planes ( p i , q i ) . This bilinear form ω ( ξ, η ) can also be written as � 0 � I ω ( ξ, η ) := ξ T J η with J = − I 0 Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 13 / 43

  16. Symplectic mappings – definition Definition A linear map A : R 2 d → R 2 d is symplectic if ω ( A ξ, A η ) = ω ( ξ, η ) for all ξ, η ∈ R 2 d or, equivalently, if A T J A = J . q q A η η A A ξ ξ p p Definition A differentiable map g : U → R 2 d (where U ⊂ R 2 d is an open set) is called symplectic if the Jacobian matrix g ′ ( p , q ) is everywhere symplectic, i.e., if g ′ ( p , q ) T J g ′ ( p , q ) = J . Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 14 / 43

  17. Theorem of Poincar´ e We write the Hamiltonian system as y = J − 1 ∇ H ( y ) ˙ with H : U → R . (1) Theorem (Poincar´ e 1899) For every fixed t, the flow ϕ t of (1) is a symplectic transformation wherever it is defined. Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 15 / 43

  18. Theorem of Poincar´ e We write the Hamiltonian system as y = J − 1 ∇ H ( y ) ˙ with H : U → R . (1) Theorem (Poincar´ e 1899) For every fixed t, the flow ϕ t of (1) is a symplectic transformation wherever it is defined. Proof. The derivative ∂ϕ t /∂ y 0 is a solution of the variational equation ˙ Ψ = J − 1 ∇ 2 H � � ϕ t ( y 0 ) Ψ. Hence, �� ∂ϕ t �� d � T � ∂ϕ t J = . . . = 0 . dt ∂ y 0 ∂ y 0 � ∂ϕ t � T � ∂ϕ t � Since J = J is satisfied for t = 0 ∂ y 0 ∂ y 0 ( ϕ 0 is the identity map), it is satisfied for all t and all y 0 . Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 15 / 43

  19. Symplecticity is characteristic for Hamiltonian systems Theorem The flow ϕ t of y = f ( y ) is a symplectic transformation for all t if and ˙ only if locally f ( y ) = J − 1 ∇ H ( y ) for some H ( y ) . Ernst Hairer (Universit´ e de Gen` eve) Geometric Numerical Integration September 10 -14, 2018 16 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend