lecture 5 geometrical numerical integration methods for
play

Lecture 5: Geometrical numerical integration methods for - PowerPoint PPT Presentation

Lecture 5: Geometrical numerical integration methods for differential equations Habib Ammari Department of Mathematics, ETH Z urich Numerical methods for ODEs Habib Ammari Geometrical numerical integration for ODEs Geometric


  1. Lecture 5: Geometrical numerical integration methods for differential equations Habib Ammari Department of Mathematics, ETH Z¨ urich Numerical methods for ODEs Habib Ammari

  2. Geometrical numerical integration for ODEs • Geometric integration: numerical integration of a differential equation, while preserving one or more of its geometric properties exactly. • Geometric properties of crucial importance in physical applications: preservation of energy, momentum, volume, symmetries, time-reversal symmetry, dissipation, and symplectic structure. • Hamiltonian systems and methods that preserve their symplectic structure, invariants, symmetries, or volume. Numerical methods for ODEs Habib Ammari

  3. Geometrical numerical integration for ODEs • Structure preserving methods for Hamiltonian systems Hamiltonian systems: important class of differential equations with a geometric structure (symplectic flow); • Preservation in the numerical discretization of the geometric structure → substantially better methods, especially when integrating over long times. • In general, most geometric properties: not preserved by standard numerical methods. • Motivations to preserve structure: (i) Faster, simpler, more stable, and/or more accurate for some types of ODEs; (ii) More robust and quantitatively better results than standard methods for the long-time integration of Hamiltonian systems. Numerical methods for ODEs Habib Ammari

  4. Geometrical numerical integration for ODEs • Symplectic methods: Consider the Hamiltonian system d t = − ∂ H d p  ∂ q ( p , q ) ,      d q d t = ∂ H ∂ p ( p , q ) ,      p (0) = p 0 , q (0) = q 0 , p 0 , q 0 ∈ R d ; Hamiltonian function H : R d × R d → R : C 1 function. Numerical methods for ODEs Habib Ammari

  5. Geometrical numerical integration for ODEs • Hamiltonian systems: • DEFINITION: • Hamiltonian system with Hamiltonian H : first-order system of ODEs  d p d t = − ∂ H ∂ q ( p , q ) ,    d t = ∂ H d q  ∂ p ( p , q ) .   • EXAMPLE: • Harmonic oscillator with Hamiltonian p 2 H ( p , q ) = 1 m + 1 2 kq 2 ; 2 m and k : positive constants. • Given a potential V , Hamiltonian systems of the form: H ( p , q ) = 1 2 p ⊤ M − 1 p + V ( q ); M : symmetric positive definite matrix and ⊤ : transpose. Numerical methods for ODEs Habib Ammari

  6. Geometrical numerical integration for ODEs • Equivalent expression for Hamiltonian systems: • x = ( p , q ) ⊤ ( p , q ∈ R d ); � 0 � I J = ; − I 0 I : d × d identity matrix. • J − 1 = J ⊤ . • Rewrite the Hamiltonian system in the form d x d t = J − 1 ∇ H ( x ) . Numerical methods for ODEs Habib Ammari

  7. Geometrical numerical integration for ODEs • Invariant for a system of ODEs: • DEFINITION: • Ω = I × D ; I ⊂ R and D ⊂ R 2 d . • Consider d x d t = f ( t , x ( t )); • f : Ω → R 2 d . • F : D → R : invariant if F ( x ( t )) = Constant . • LEMMA: • Hamiltonian H : invariant of the associated Hamiltonian system. Numerical methods for ODEs Habib Ammari

  8. Geometrical numerical integration for ODEs • DEFINITION Symplectic linear mapping • Matrix A ∈ R 2 d × R 2 d (linear mapping from R 2 d to R 2 d ): symplectic if A ⊤ JA = J . • DEFINITION Symplectic mapping • Differentiable map g : U → R 2 d : symplectic if the Jacobian matrix g ′ ( p , q ): everywhere symplectic, i.e., if g ′ ( p , q ) ⊤ Jg ′ ( p , q ) = J . Numerical methods for ODEs Habib Ammari

  9. Geometrical numerical integration for ODEs • THEOREM: • If g : symplectic mapping, then it preserves the Hamiltonian form of the equation. Numerical methods for ODEs Habib Ammari

  10. Geometrical numerical integration for ODEs • DEFINITION: • Flow: φ t ( p 0 , q 0 ) = ( p ( t , p 0 , q 0 ) , q ( t , p 0 , q 0 )); • φ t : U → R 2 d , U ⊂ R 2 d ; • p 0 and q 0 : initial data at t = 0. • THEOREM: Poincar´ e’s theorem • H : twice differentiable. • Flow φ t : symplectic transformation. Numerical methods for ODEs Habib Ammari

  11. Geometrical numerical integration for ODEs • Symplecticity of the flow: characteristic property of the Hamiltonian system. • THEOREM: • f : U → R 2 d : continuously differentiable. d x • d t = f ( x ): locally Hamiltonian iff φ t ( x ): symplectic for all x ∈ U and for all sufficiently small t . Numerical methods for ODEs Habib Ammari

  12. Geometrical numerical integration for ODEs • DEFINITION: � � 0 I • Let J := . − I 0 • Numerical one-step method ( p k +1 , q k +1 ) = Φ ∆ t ( p k , q k ) symplectic if the numerical flow Φ ∆ t : symplectic map: Φ ′ ∆ t ( p , q ) ⊤ J Φ ′ ∆ t ( p , q ) = J , for all ( p , q ) and all step sizes ∆ t . Numerical methods for ODEs Habib Ammari

  13. Geometrical numerical integration for ODEs • THEOREM: • Implicit Euler method: p k − ∆ t ∂ H  ∂ q ( p k +1 , q k ) , p k +1 =    q k + ∆ t ∂ H q k +1 ∂ p ( p k +1 , q k ) ,  =   symplectic. • Moreover, if H ( p , q ) = T ( p ) + V ( q ) is separable, then the scheme: explicit. Numerical methods for ODEs Habib Ammari

  14. Geometrical numerical integration for ODEs • PROOF: • Φ ∆ t : numerical flow ∆ t ( p k , q k ) = ∂ ( p k +1 , q k +1 ) Φ ′ . ∂ ( p k , q k ) ∂ 2 H ∂ p 2 , ∂ 2 H ∂ q 2 , and ∂ 2 H ∂ p 2 evaluated at ( p k +1 , q k ): •  I + ∆ t ∂ 2 H  − ∆ t ∂ 2 H   0 I ∂ q 2 ∂ p ∂ q    Φ ′ ∆ t ( p k , q k ) =  .     I + ∆ t ∂ 2 H  − ∆ t ∂ 2 H   0  I ∂ p ∂ q ∂ p 2 • ⇒ Symplecticity condition holds by computing Φ ′ ∆ t ( p k , q k ). Numerical methods for ODEs Habib Ammari

  15. Geometrical numerical integration for ODEs • Variant of Euler scheme: p k − ∆ t ∂ H  p k +1 ∂ q ( p k , q k +1 ) , =    q k + ∆ t ∂ H q k +1 ∂ p ( p k , q k +1 ) .  =   • Symplectic and explicit for separable Hamiltonian functions. Numerical methods for ODEs Habib Ammari

  16. Geometrical numerical integration for ODEs • THEOREM: • Composition of two symplectic one-step methods: also symplectic. Numerical methods for ODEs Habib Ammari

  17. Geometrical numerical integration for ODEs • PROOF: • Φ (1) ∆ t and Φ (2) ∆ t : numerical flows associated with two symplectic one-step methods. • Φ ∆ t := Φ (2) ∆ t ◦ Φ (1) ∆ t . Numerical methods for ODEs Habib Ammari

  18. Geometrical numerical integration for ODEs • Compute: x ∗ = Φ (1) ∆ t ( x ), ∆ t ( x ) = ((Φ (2) ∆ t ) ′ ( x ∗ )(Φ (1) ∆ t ) ′ ( x )) ⊤ J (Φ (2) ∆ t ) ′ ( x ∗ )(Φ (1) (Φ ′ ∆ t ( x )) ⊤ J Φ ′ ∆ t ) ′ ( x ) = ((Φ (1) ∆ t ) ′ ( x )) ⊤ ((Φ (2) ∆ t ) ′ ( x ∗ )) ⊤ J (Φ (2) ∆ t ) ′ ( x ∗ )(Φ (1) ∆ t ) ′ ( x ) = ((Φ (1) ∆ t ) ′ ( x )) ⊤ J (Φ (1) ∆ t ) ′ ( x )= J . • ⇒ Composition of symplectic one-step methods: symplectic one-step method. Numerical methods for ODEs Habib Ammari

  19. Geometrical numerical integration for ODEs • Leapfrog method (Verlet method and Str¨ omer-Verlet method):  2 = p k − ∆ t ∂ H p k + 1 ∂ q ( p k + 1 2 , q k ) ,   2        q k +1 = q k + ∆ t � ∂ H � 2 , q k ) + ∂ H  ∂ p ( p k + 1 ∂ p ( p k + 1 2 , q k +1 ) , 2      2 − ∆ t ∂ H  p k +1 = p k + 1 ∂ q ( p k + 1  2 , q k +1 ) .    2 • THEOREM: • Leapfrog method: symplectic. Numerical methods for ODEs Habib Ammari

  20. Geometrical numerical integration for ODEs • PROOF: • Leapfrog method: composition of the symplectric Euler method p k − ∆ t ∂ H  ∂ q ( p k + 1 p k + 1 2 , q k ) , = 2   2  q k + ∆ t ∂ H ∂ p ( p k + 1 q k + 1 2 , q k ) ,  =  2  2 and its adjoint 2 + ∆ t ∂ H  q k + 1 ∂ p ( p k + 1 2 , q k +1 ) , q k +1 =   2  2 − ∆ t ∂ H p k + 1 ∂ q ( p k + 1 p k +1 2 , q k +1 ) .  =   2 • Symplectic methods ⇒ composition: also symplectic. Numerical methods for ODEs Habib Ammari

  21. Geometrical numerical integration for ODEs • DEFINITION: • Adjoint method Φ ∗ ∆ t of a method Φ ∆ t : inverse map of the original method with reversed time step: Φ ∗ ∆ t := Φ − 1 − ∆ t . • Replace ∆ t by − ∆ t and exchange k and k + 1. • Properties: ∆ t ) ∗ = Φ ∆ t ; • (Φ ∗ ∆ t ) ∗ = (Φ (1) ∆ t ) ∗ ◦ (Φ (2) • (Φ (2) ∆ t ◦ Φ (1) ∆ t ) ∗ ; ∆ t / 2 ) ∗ = Φ ∆ t / 2 ◦ Φ ∗ • (Φ ∆ t / 2 ◦ Φ ∗ ∆ t / 2 . Numerical methods for ODEs Habib Ammari

  22. Geometrical numerical integration for ODEs • Preserving time-reversal symmetry and invariants • Preserving time-reversal symmetry: • Leapfrog method: symmetric with respect to changing the direction of time; • Replacing ∆ t by − ∆ t and exchanging the superscripts k and k + 1 results in the same method. Numerical methods for ODEs Habib Ammari

  23. Geometrical numerical integration for ODEs • Symmetry property for the numerical one-step map Φ ∆ t : ( p k , q k ) �→ ( p k +1 , q k +1 ). • DEFINITION: • Numerical one-step map Φ ∆ t : symmetric if Φ ∆ t = Φ − 1 − ∆ t (=: Φ ∗ ∆ t ) . • Symmetry property: does not hold for the symplectic Euler methods. Numerical methods for ODEs Habib Ammari

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend